-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrain_animal10N.py
487 lines (418 loc) · 20.1 KB
/
Train_animal10N.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
from __future__ import print_function
import sys
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.models as models
from models.CNN import CNN
import random
import os
import argparse
import numpy as np
import dataloader_animal10N as animal_dataloader
from sklearn.mixture import GaussianMixture
import copy
parser = argparse.ArgumentParser(description='PyTorch Clothing1M Training')
parser.add_argument('--batch_size', default=128, type=int, help='train batchsize')
parser.add_argument('--lr', '--learning_rate', default=0.01, type=float, help='initial learning rate')
parser.add_argument('--alpha', default=4, type=float, help='parameter for Beta')
parser.add_argument('--lambda_u', default=0, type=float, help='weight for unsupervised loss')
parser.add_argument('--p_threshold', default=0.5, type=float, help='clean probability threshold')
parser.add_argument('--T', default=0.5, type=float, help='sharpening temperature')
parser.add_argument('--num_epochs', default=300, type=int)
parser.add_argument('--id', default='animal10N')
# parser.add_argument('--data_path', default='E:/Dataset_All/clothing1M/images', type=str, help='path to dataset')
parser.add_argument('--data_path', default='C:/Users/USSTz/Desktop/Animal-10N', type=str, help='path to dataset')
parser.add_argument('--seed', default=123)
parser.add_argument('--gpuid', default=0, type=int)
parser.add_argument('--num_class', default=10, type=int)
# parser.add_argument('--num_batches', default=1000, type=int)
args = parser.parse_args()
torch.cuda.set_device(args.gpuid)
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
# Training
def train(epoch, net, net2, optimizer, labeled_trainloader, unlabeled_trainloader):
net.train()
net2.eval() # fix one network and train the other
unlabeled_train_iter = iter(unlabeled_trainloader)
num_iter = (len(labeled_trainloader.dataset) // args.batch_size) + 1
for batch_idx, (inputs_x, inputs_x2, labels_x, w_x) in enumerate(labeled_trainloader):
try:
inputs_u, inputs_u2 = unlabeled_train_iter.__next__()
except:
unlabeled_train_iter = iter(unlabeled_trainloader)
inputs_u, inputs_u2 = unlabeled_train_iter.__next__()
batch_size = inputs_x.size(0)
# Transform label to one-hot
labels_x = torch.zeros(batch_size, args.num_class).scatter_(1, labels_x.view(-1, 1), 1)
w_x = w_x.view(-1, 1).type(torch.FloatTensor)
inputs_x, inputs_x2, labels_x, w_x = inputs_x.cuda(), inputs_x2.cuda(), labels_x.cuda(), w_x.cuda()
inputs_u, inputs_u2 = inputs_u.cuda(), inputs_u2.cuda()
with torch.no_grad():
# label co-guessing of unlabeled samples
outputs_u11 = net(inputs_u)
outputs_u12 = net(inputs_u2)
outputs_u21 = net2(inputs_u)
outputs_u22 = net2(inputs_u2)
pu = (torch.softmax(outputs_u11, dim=1) + torch.softmax(outputs_u12, dim=1) +
torch.softmax(outputs_u21, dim=1) + torch.softmax(outputs_u22, dim=1)) / 4
ptu = pu ** (1 / args.T) # temparature sharpening
targets_u = ptu / ptu.sum(dim=1, keepdim=True) # normalize
targets_u = targets_u.detach()
# label refinement of labeled samples
outputs_x = net(inputs_x)
outputs_x2 = net(inputs_x2)
px = (torch.softmax(outputs_x, dim=1) + torch.softmax(outputs_x2, dim=1)) / 2
px = w_x * labels_x + (1 - w_x) * px
ptx = px ** (1 / args.T) # temparature sharpening
targets_x = ptx / ptx.sum(dim=1, keepdim=True) # normalize
targets_x = targets_x.detach()
# mixmatch
l = np.random.beta(args.alpha, args.alpha)
l = max(l, 1 - l)
all_inputs = torch.cat([inputs_x, inputs_x2, inputs_u, inputs_u2], dim=0)
all_targets = torch.cat([targets_x, targets_x, targets_u, targets_u], dim=0)
idx = torch.randperm(all_inputs.size(0))
input_a, input_b = all_inputs, all_inputs[idx]
target_a, target_b = all_targets, all_targets[idx]
mixed_input = l * input_a[:batch_size * 2] + (1 - l) * input_b[:batch_size * 2]
mixed_target = l * target_a[:batch_size * 2] + (1 - l) * target_b[:batch_size * 2]
logits = net(mixed_input)
Lx = -torch.mean(torch.sum(F.log_softmax(logits, dim=1) * mixed_target, dim=1))
# regularization
prior = torch.ones(args.num_class) / args.num_class
prior = prior.cuda()
pred_mean = torch.softmax(logits, dim=1).mean(0)
penalty = torch.sum(prior * torch.log(prior / pred_mean))
loss = Lx + penalty
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
sys.stdout.write('\r')
sys.stdout.write('Animal10N | Epoch [%3d/%3d] Iter[%3d/%3d]\t Labeled loss: %.4f '
% (epoch, args.num_epochs, batch_idx + 1, num_iter, Lx.item()))
sys.stdout.flush()
def warmup(net, optimizer, dataloader):
net.train()
num_batches = 50000/args.batch_size
for batch_idx, (inputs, labels, path) in enumerate(dataloader):
inputs, labels = inputs.cuda(), labels.cuda()
optimizer.zero_grad()
outputs = net(inputs)
loss = CEloss(outputs, labels)
penalty = conf_penalty(outputs)
L = loss + penalty
L.backward()
optimizer.step()
sys.stdout.write('\r')
sys.stdout.write('|Warm-up: Iter[%3d/%3d]\t CE-loss: %.4f Conf-Penalty: %.4f'
% (batch_idx + 1, num_batches, loss.item(), penalty.item()))
sys.stdout.flush()
def val(net, val_loader, best_acc, w_glob=None):
net.eval()
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(val_loader):
inputs, targets = inputs.cuda(), targets.cuda()
outputs = net(inputs)
_, predicted = torch.max(outputs, 1)
total += targets.size(0)
correct += predicted.eq(targets).cpu().sum().item()
acc = 100. * correct / total
print("\n| Validation\t Net%d Acc: %.2f%%" % (k, acc))
if acc > best_acc[k - 1]:
best_acc[k - 1] = acc
print('| Saving Best Net%d ...' % k)
save_point = './checkpoint/%s_net%d.pth.tar' % (args.id, k)
torch.save(net.state_dict(), save_point)
return acc
def test(epoch, net1, net2, test_loader, best_acc, w_glob=None):
if w_glob is None:
net1.eval()
net2.eval()
correct = 0
correct2 = 0
correct1 = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs, targets = inputs.cuda(), targets.cuda()
outputs1 = net1(inputs)
outputs2 = net2(inputs)
outputs = outputs1 + outputs2
_, predicted = torch.max(outputs, 1)
_, predicted1 = torch.max(outputs1, 1)
_, predicted2 = torch.max(outputs2, 1)
total += targets.size(0)
correct += predicted.eq(targets).cpu().sum().item()
correct1 += predicted1.eq(targets).cpu().sum().item()
correct2 += predicted2.eq(targets).cpu().sum().item()
acc = 100. * correct / total
acc1 = 100. * correct / total
acc2 = 100. * correct / total
if best_acc < acc:
best_acc = acc
print(
"\n| Ensemble network Test Epoch #%d\t Accuracy: %.2f, Accuracy1: %.2f, Accuracy2: %.2f, best_acc: %.2f%%\n" % (
epoch, acc, acc1, acc2, best_acc))
log.write('ensemble_Epoch:%d Accuracy:%.2f, Accuracy1: %.2f, Accuracy2: %.2f, best_acc: %.2f\n' % (
epoch, acc, acc1, acc2, best_acc))
log.flush()
else:
net1_w_bak = net1.state_dict()
net1.load_state_dict(w_glob)
net1.eval()
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs, targets = inputs.cuda(), targets.cuda()
outputs1 = net1(inputs)
_, predicted = torch.max(outputs1, 1)
total += targets.size(0)
correct += predicted.eq(targets).cpu().sum().item()
acc = 100. * correct / total
if best_acc < acc:
best_acc = acc
print("\n| Global network Test Epoch #%d\t Accuracy: %.2f, best_acc: %.2f%%\n" % (epoch, acc, best_acc))
log.write('global_Epoch:%d Accuracy:%.2f, best_acc: %.2f\n' % (epoch, acc, best_acc))
log.flush()
# 恢复权重
net1.load_state_dict(net1_w_bak)
return best_acc
def eval_train(epoch, model):
model.eval()
num_samples = eval_loader.dataset.__len__()
losses = torch.zeros(num_samples)
paths = []
n = 0
with torch.no_grad():
for batch_idx, (inputs, targets, path) in enumerate(eval_loader):
inputs, targets = inputs.cuda(), targets.cuda()
outputs = model(inputs)
loss = CE(outputs, targets)
for b in range(inputs.size(0)):
losses[n] = loss[b]
paths.append(path[b])
n += 1
sys.stdout.write('\r')
sys.stdout.write('| Evaluating loss Iter %3d\t' % (batch_idx))
sys.stdout.flush()
losses = (losses - losses.min()) / (losses.max() - losses.min())
losses = losses.reshape(-1, 1)
gmm = GaussianMixture(n_components=2, max_iter=10, reg_covar=5e-4, tol=1e-2)
gmm.fit(losses)
prob = gmm.predict_proba(losses)
prob = prob[:, gmm.means_.argmin()]
return prob, paths
class NegEntropy(object):
def __call__(self, outputs):
probs = torch.softmax(outputs, dim=1)
return torch.mean(torch.sum(probs.log() * probs, dim=1))
def create_model():
use_cnn = True
if use_cnn:
model = CNN()
model = model.cuda()
else:
model = models.vgg19_bn(pretrained=False)
model.classifier._modules['6'] = nn.Linear(4096, 10)
model = model.cuda()
return model
def FedAvg(w):
w_avg = copy.deepcopy(w[0])
for k in w_avg.keys():
for i in range(1, len(w)):
w_avg[k] += w[i][k]
# 只考虑iid noise的话,每个client训练样本数一样,所以不用做nk/n
w_avg[k] = torch.div(w_avg[k], len(w))
return w_avg
log = open('./checkpoint/%s.txt' % args.id, 'w')
log.flush()
loader = animal_dataloader.animal_dataloader(root=args.data_path, batch_size=args.batch_size, num_workers=0)
print('| Building net')
net1 = create_model()
net2 = create_model()
cudnn.benchmark = True
optimizer1 = optim.SGD(net1.parameters(), lr=args.lr, momentum=0.9, weight_decay=1e-3)
optimizer2 = optim.SGD(net2.parameters(), lr=args.lr, momentum=0.9, weight_decay=1e-3)
CE = nn.CrossEntropyLoss(reduction='none')
CEloss = nn.CrossEntropyLoss()
conf_penalty = NegEntropy()
local_round = 5
balance_crit = 'median' # 'median'
exp_path = './checkpoint/c2mt_animal10N'
boot_loader = None
w_glob = None
best_en_acc = 0.
best_gl_acc = 0.
resume_epoch = 0
warm_up = 10
if resume_epoch > 0:
snapLast = exp_path + str(resume_epoch - 1) + "_global_model.pth"
global_state = torch.load(snapLast)
# 先更新还是后跟新
w_glob = global_state
net1.load_state_dict(global_state)
net2.load_state_dict(global_state)
# if True:
# snapLast = exp_path + "0_1_model.pth"
# global_state = torch.load(snapLast)
# net1.load_state_dict(global_state)
# snapLast = exp_path + "0_2_model.pth"
# global_state = torch.load(snapLast)
# net2.load_state_dict(global_state)
# test_loader = loader.run('test')
# best_en_acc = test(0, net1, net2, test_loader, best_en_acc)
for epoch in range(resume_epoch, args.num_epochs + 1):
lr = args.lr
if 50 <= epoch < 100:
lr /= 10
elif epoch >= 130:
lr /= 10
# if 15 <= epoch:
# lr /= 2
for param_group in optimizer1.param_groups:
param_group['lr'] = lr
for param_group in optimizer2.param_groups:
param_group['lr'] = lr
local_weights = []
if epoch < warm_up: # warm up
train_loader = loader.run('warmup')
print('Warmup Net1')
warmup(net1, optimizer1, train_loader)
train_loader = loader.run('warmup')
print('\nWarmup Net2')
warmup(net2, optimizer2, train_loader)
if epoch == (warm_up - 1):
snapLast = exp_path + str(epoch) + "_1_model.pth"
torch.save(net1.state_dict(), snapLast)
snapLast = exp_path + str(epoch) + "_2_model.pth"
torch.save(net1.state_dict(), snapLast)
local_weights.append(net1.state_dict())
local_weights.append(net2.state_dict())
w_glob = FedAvg(local_weights)
else:
if epoch != warm_up:
net1.load_state_dict(w_glob)
net2.load_state_dict(w_glob)
for rou in range(local_round):
print('\n==== net 1 evaluate next epoch training data loss ====')
eval_loader = loader.run('eval_train') # evaluate training data loss for next epoch
prob1, paths1 = eval_train(epoch, net1)
print('\n==== net 2 evaluate next epoch training data loss ====')
eval_loader = loader.run('eval_train')
prob2, paths2 = eval_train(epoch, net2)
pred1 = (prob1 > args.p_threshold) # divide dataset
pred2 = (prob2 > args.p_threshold)
non_zero_idx = pred1.nonzero()[0].tolist()
aaa = len(non_zero_idx)
if balance_crit == "max" or balance_crit == "min" or balance_crit == "median":
num_clean_per_class = np.zeros(args.num_class)
ppp = np.array(paths1)[non_zero_idx].tolist()
target_label = np.array([eval_loader.dataset.train_labels[it] for it in ppp])
# target_label = np.array(eval_loader.dataset.train_labels[paths1])[non_zero_idx]
for i in range(args.num_class):
idx_class = np.where(target_label == i)[0]
num_clean_per_class[i] = len(idx_class)
if balance_crit == "max":
num_samples2select_class = np.max(num_clean_per_class)
elif balance_crit == "min":
num_samples2select_class = np.min(num_clean_per_class)
elif balance_crit == "median":
num_samples2select_class = np.median(num_clean_per_class)
for i in range(args.num_class):
idx_class = np.where(np.array([eval_loader.dataset.train_labels[it] for it in paths1]) == i)[0]
cur_num = num_clean_per_class[i]
idx_class2 = non_zero_idx
if num_samples2select_class > cur_num:
remian_idx = list(set(idx_class.tolist()) - set(idx_class2))
idx = list(range(len(remian_idx)))
random.shuffle(idx)
num_app = int(num_samples2select_class - cur_num)
idx = idx[:num_app]
for j in idx:
non_zero_idx.append(remian_idx[j])
non_zero_idx = np.array(non_zero_idx).reshape(-1, )
bbb = len(non_zero_idx)
num_per_class2 = []
for i in range(10):
temp = \
np.where(np.array([eval_loader.dataset.train_labels[it] for it in paths1])[non_zero_idx.tolist()] == i)[
0]
num_per_class2.append(len(temp))
print('\npred1 appended num per class:', num_per_class2, aaa, bbb)
idx_per_class = np.zeros_like(pred1).astype(bool)
for i in non_zero_idx:
idx_per_class[i] = True
pred1 = idx_per_class
non_aaa = pred1.nonzero()[0].tolist()
assert len(non_aaa) == len(non_zero_idx)
non_zero_idx2 = pred2.nonzero()[0].tolist()
aaa = len(non_zero_idx2)
if balance_crit == "max" or balance_crit == "min" or balance_crit == "median":
num_clean_per_class = np.zeros(args.num_class)
ppp = np.array(paths2)[non_zero_idx].tolist()
target_label = np.array([eval_loader.dataset.train_labels[it] for it in ppp])
for i in range(args.num_class):
idx_class = np.where(target_label == i)[0]
num_clean_per_class[i] = len(idx_class)
if balance_crit == "max":
num_samples2select_class = np.max(num_clean_per_class)
elif balance_crit == "min":
num_samples2select_class = np.min(num_clean_per_class)
elif balance_crit == "median":
num_samples2select_class = np.median(num_clean_per_class)
for i in range(args.num_class):
idx_class = np.where(np.array([eval_loader.dataset.train_labels[it] for it in paths1]) == i)[0]
cur_num = num_clean_per_class[i]
idx_class2 = non_zero_idx2
if num_samples2select_class > cur_num:
remian_idx = list(set(idx_class.tolist()) - set(idx_class2))
idx = list(range(len(remian_idx)))
random.shuffle(idx)
num_app = int(num_samples2select_class - cur_num)
idx = idx[:num_app]
for j in idx:
non_zero_idx2.append(remian_idx[j])
non_zero_idx2 = np.array(non_zero_idx2).reshape(-1, )
bbb = len(non_zero_idx2)
num_per_class2 = []
for i in range(10):
temp = np.where(
np.array([eval_loader.dataset.train_labels[it] for it in paths1])[non_zero_idx2.tolist()] == i)[0]
num_per_class2.append(len(temp))
print('\npred2 appended num per class:', num_per_class2, aaa, bbb)
idx_per_class2 = np.zeros_like(pred2).astype(bool)
for i in non_zero_idx2:
idx_per_class2[i] = True
pred2 = idx_per_class2
non_aaa = pred2.nonzero()[0].tolist()
assert len(non_aaa) == len(non_zero_idx2)
print(f'round={rou}/{local_round}, dmix selection, Train Net1')
labeled_trainloader, unlabeled_trainloader = loader.run('train', pred2, prob2, paths=paths2) # co-divide
train(epoch, net1, net2, optimizer1, labeled_trainloader, unlabeled_trainloader) # train net1
print(f'\nround={rou}/{local_round}, dmix selection, Train Net2')
labeled_trainloader, unlabeled_trainloader = loader.run('train', pred1, prob1, paths=paths1) # co-divide
train(epoch, net2, net1, optimizer2, labeled_trainloader, unlabeled_trainloader) # train net2
test_loader = loader.run('test')
if rou != local_round-1:
best_en_acc = test(epoch, net1, net2, test_loader, best_en_acc)
# best_gl_acc = test(epoch, net1, net2, test_loader, best_gl_acc, w_glob=w_glob)
print(f'c2m, get global network\n')
local_weights.append(net1.state_dict())
local_weights.append(net2.state_dict())
w_glob = FedAvg(local_weights)
if epoch % 1 == 0:
snapLast = exp_path + str(epoch) + "_global_model.pth"
torch.save(w_glob, snapLast)
test_loader = loader.run('test')
best_en_acc = test(epoch, net1, net2, test_loader, best_en_acc)
best_gl_acc = test(epoch, net1, net2, test_loader, best_gl_acc, w_glob=w_glob)