-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDockerfile
125 lines (103 loc) · 3.81 KB
/
Dockerfile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
ARG CUDA_VERSION=12.6.3
ARG IMAGE_DISTRO=ubuntu24.04
ARG PYTHON_VERSION=3.12
# ---------- Builder Base ----------
FROM nvcr.io/nvidia/cuda:${CUDA_VERSION}-devel-${IMAGE_DISTRO} AS base
# Set arch lists for all targets
# 'a' suffix is not forward compatible but enables all optimizations
ARG TORCH_CUDA_ARCH_LIST="9.0a"
ENV TORCH_CUDA_ARCH_LIST=${TORCH_CUDA_ARCH_LIST}
ARG VLLM_FA_CMAKE_GPU_ARCHES="90a-real"
ENV VLLM_FA_CMAKE_GPU_ARCHES=${VLLM_FA_CMAKE_GPU_ARCHES}
# Update apt packages and install dependencies
ENV DEBIAN_FRONTEND=noninteractive
RUN apt update
RUN apt upgrade -y
RUN apt install -y --no-install-recommends \
curl \
git \
libibverbs-dev \
zlib1g-dev
# Clean apt cache
RUN apt clean
RUN rm -rf /var/lib/apt/lists/*
RUN rm -rf /var/cache/apt/archives
# Set compiler paths
ENV CC=/usr/bin/gcc
ENV CXX=/usr/bin/g++
# Install uv
RUN curl -LsSf https://astral.sh/uv/install.sh | env UV_INSTALL_DIR=/usr/local/bin sh
# Setup build workspace
WORKDIR /workspace
# Prep build venv
ARG PYTHON_VERSION
RUN uv venv -p ${PYTHON_VERSION} --seed --python-preference only-managed
ENV VIRTUAL_ENV=/workspace/.venv
ENV PATH=${VIRTUAL_ENV}/bin:${PATH}
ENV CUDA_HOME=/usr/local/cuda
ENV LD_LIBRARY_PATH=${CUDA_HOME}/lib64:${LD_LIBRARY_PATH}
# Install pytorch nightly
RUN uv pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu126
FROM base AS build-base
RUN mkdir /wheels
# Install build deps that aren't in project requirements files
# Make sure to upgrade setuptools to avoid triton build bug
RUN uv pip install -U build cmake ninja pybind11 setuptools wheel
FROM build-base AS build-triton
ARG TRITON_REF=release/3.2.x
ARG TRITON_BUILD_SUFFIX=+cu126
ENV TRITON_WHEEL_VERSION_SUFFIX=${TRITON_BUILD_SUFFIX:-}
RUN git clone https://github.com/triton-lang/triton.git
RUN cd triton && \
git checkout ${TRITON_REF} && \
git submodule sync && \
git submodule update --init --recursive -j 8 && \
uv build python --wheel --no-build-isolation -o /wheels
FROM build-base AS build-xformers
ARG XFORMERS_REF=v0.0.29.post2
ARG XFORMERS_BUILD_VERSION=0.0.29.post2+cu126
ENV BUILD_VERSION=${XFORMERS_BUILD_VERSION:-${XFORMERS_REF#v}}
RUN git clone https://github.com/facebookresearch/xformers.git
RUN cd xformers && \
git checkout ${XFORMERS_REF} && \
git submodule sync && \
git submodule update --init --recursive -j 8 && \
uv build --wheel --no-build-isolation -o /wheels
FROM build-base AS build-flashinfer
ARG FLASHINFER_ENABLE_AOT=1
ARG FLASHINFER_REF=v0.2.2.post1
ARG FLASHINFER_BUILD_SUFFIX=cu126
ENV FLASHINFER_LOCAL_VERSION=${FLASHINFER_BUILD_SUFFIX:-}
RUN git clone https://github.com/flashinfer-ai/flashinfer.git
RUN cd flashinfer && \
git checkout ${FLASHINFER_REF} && \
git submodule sync && \
git submodule update --init --recursive -j 8 && \
uv build --wheel --no-build-isolation -o /wheels
FROM build-base AS build-vllm
ARG VLLM_REF=v0.8.1
RUN git clone https://github.com/vllm-project/vllm.git
RUN cd vllm && \
git checkout ${VLLM_REF} && \
git submodule sync && \
git submodule update --init --recursive -j 8 && \
uv pip install -r requirements/build.txt && \
uv build --wheel --no-build-isolation -o /wheels
FROM base AS vllm-openai
COPY --from=build-flashinfer /wheels/* wheels/
COPY --from=build-triton /wheels/* wheels/
COPY --from=build-vllm /wheels/* wheels/
COPY --from=build-xformers /wheels/* wheels/
# Install and cleanup wheels
RUN uv pip install wheels/*
RUN rm -r wheels
# Install pynvml
RUN uv pip install pynvml
# Add additional packages for vLLM OpenAI
RUN uv pip install accelerate hf_transfer modelscope bitsandbytes timm boto3 runai-model-streamer runai-model-streamer[s3] tensorizer
# Clean uv cache
RUN uv clean
# Enable hf-transfer
ENV HF_HUB_ENABLE_HF_TRANSFER=1
# API server entrypoint
ENTRYPOINT ["vllm", "serve"]