Skip to content

Commit 0a9e8fe

Browse files
authored
Merge pull request #187 from Labelbox/develop
2.7 release
2 parents dbbe2d8 + 2a4147f commit 0a9e8fe

18 files changed

+2537
-21
lines changed

CHANGELOG.md

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,9 @@
11
# Changelog
22

3+
# Version 2.7.0 (2021-06-27)
4+
## Added
5+
* Added `dataset.export_data_rows()` which returns all `DataRows` for a `Dataset`.
6+
37
# Version 2.6.0 (2021-06-11)
48
## Fix
59
* Upated `create_mask_ndjson` helper function in `image_mal.ipynb` to use the color arg

docs/source/conf.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@
2121
copyright = '2021, Labelbox'
2222
author = 'Labelbox'
2323

24-
release = '2.5.6'
24+
release = '2.6.0'
2525

2626
# -- General configuration ---------------------------------------------------
2727

docs/source/index.rst

Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -14,6 +14,13 @@ Client
1414
:exclude-members: upload_data, upload_file
1515
:show-inheritance:
1616

17+
AssetAttachment
18+
--------------------------------------
19+
20+
.. automodule:: labelbox.schema.asset_attachment
21+
:members:
22+
:show-inheritance:
23+
1724
AssetMetadata
1825
--------------------------------------
1926

examples/integrations/tlt/README.md

Lines changed: 20 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,20 @@
1+
# NVIDIA + Labelbox
2+
3+
##### Turn any Labelbox bounding box project into a deployed service by following these tutorials
4+
5+
--------
6+
7+
8+
#### labelbox_upload.ipynb
9+
* Download images and prelabels
10+
* Setup a labelbox project
11+
* Upload prelabels to labelbox using MAL
12+
* Clean up the data in labelbox
13+
14+
#### detectnet_v2_bounding_box.ipynb
15+
* Plug in training data from previous step (or bring your own labelbox project)
16+
* Train a model using TLT. Compare with a non-pretrained model
17+
* Prune the model for more efficient deployment
18+
* Convert the model to a TRT engine
19+
* Deploy the model using Triton Inference Server
20+

0 commit comments

Comments
 (0)