forked from chenyuntc/pytorch-book
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
31 lines (27 loc) · 1.27 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# coding:utf8
import torch
import torch.nn as nn
import torch.nn.functional as F
class PoetryModel(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim):
super(PoetryModel, self).__init__()
self.hidden_dim = hidden_dim
self.embeddings = nn.Embedding(vocab_size, embedding_dim)
self.lstm = nn.LSTM(embedding_dim, self.hidden_dim, num_layers=2)
self.linear1 = nn.Linear(self.hidden_dim, vocab_size)
def forward(self, input, hidden=None):
seq_len, batch_size = input.size()
if hidden is None:
# h_0 = 0.01*torch.Tensor(2, batch_size, self.hidden_dim).normal_().cuda()
# c_0 = 0.01*torch.Tensor(2, batch_size, self.hidden_dim).normal_().cuda()
h_0 = input.data.new(2, batch_size, self.hidden_dim).fill_(0).float()
c_0 = input.data.new(2, batch_size, self.hidden_dim).fill_(0).float()
else:
h_0, c_0 = hidden
# size: (seq_len,batch_size,embeding_dim)
embeds = self.embeddings(input)
# output size: (seq_len,batch_size,hidden_dim)
output, hidden = self.lstm(embeds, (h_0, c_0))
# size: (seq_len*batch_size,vocab_size)
output = self.linear1(output.view(seq_len * batch_size, -1))
return output, hidden