Synthetic coevolution reveals adaptive mutational trajectories of neutralizing antibodies and SARS-CoV-2
Implementation of the paper [Synthetic coevolution reveals adaptive mutational trajectories of neutralizing antibodies and SARS-CoV-2], by Roy Ehling, Mason Minot, Max Overath, Daniel Sheward, Jiami Han, Beichen Gao, Joseph Taft, Margarita Pertseva, Cedric Weber, Lester Frei, Thomas Bikias, Ben Murrell, and Sai Reddy.
cd envs
conda env create -f syn_coev.yml
conda activate syn_coev
python -m venv syn_coev
- Windows:
syn_coev\Scripts\activate.bat
Unix / MacOS:source syn_coev/bin/activate
- in
envs/
, runpip install -r requirements.txt
- Preprocessing.
- Model training and evaluation.
- Plot results.
Note: Data will be made available following publication.
In scripts/
run preprocessing.sh
.
Note: analysis run with torch 2.1.2+cu121, but environment contains torch 2.1.2
In scripts/
run train.sh
.
This will populate the folder results/
with .csv files in the appropriate format for plotting in Step 3.
In scripts/
run plot.sh
.
@article {Ehling2024.03.28.587189,
author = {Roy A. Ehling, Mason Minot, Max D. Overath, Daniel J. Sheward, Jiami Han, Beichen Gao, Joseph M. Taft, Margarita Pertseva, C{\'e}dric R. Weber, Lester Frei, Thomas Bikias, Ben Murrell, and Sai T. Reddy},
title = {Synthetic coevolution reveals adaptive mutational trajectories of neutralizing antibodies and SARS-CoV-2},
year = {2024},
doi = {10.1101/2024.03.28.587189},
publisher = {Cold Spring Harbor Laboratory},
journal = {bioRxiv}
}