-
Notifications
You must be signed in to change notification settings - Fork 0
/
Code_figures_Challenge2_LRGASP_supplementary_figures.R
5468 lines (3635 loc) · 272 KB
/
Code_figures_Challenge2_LRGASP_supplementary_figures.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
library('LSD')
library(ggplot2)
library(plyr)
library(ggridges)
library(RColorBrewer)
library(dplyr)
library(ggprism)
library(ggpubr)
library(cowplot)
library(MASS)
library(viridis)
theme_set(theme_bw(base_size = 16))
library(grid)
library(gridExtra)
library(scales)
library(ggthemes)
library(ggridges)
library(pheatmap)
library(ggpointdensity)
outdir = "output/supplementary"
dir.create(outdir, recursive=TRUE, showWarnings=FALSE)
## CV curves-------------------------------------------------------------------------------------------
## H1-mix CapTrap ONT
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/Bambu_CapTrap_ONT_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x1 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/BambuLR_CapTrap_ONT_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x2 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/FLAMES_CapTrap_ONT_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x3 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/IsoQuant_CapTrap_ONT_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x4 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/LAPA_CapTrap_ONT_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x5 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
p1 <- ggarrange(x1,x2,NULL,x3,x4,NULL,x5,NULL,NULL,ncol = 9, align = "v",hjust=0)
## H1-mix CapTrap PacBio
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/Bambu_CapTrap_PacBio_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x6 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/BambuLR_CapTrap_PacBio_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x7 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/FLAMES_CapTrap_PacBio_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x8 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/IsoQuant_CapTrap_PacBio_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x9 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/LAPA_CapTrap_PacBio_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x10 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
p2 <- ggarrange(x6,x7,NULL,x8,x9,NULL,x10,NULL,NULL,ncol = 9, align = "v",hjust=0)
## H1-mix cDNA ONT
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/Bambu_cDNA_ONT_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x11 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/BambuLR_cDNA_ONT_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x12 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/FLAIR_cDNA_ONT_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x13 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/FLAMES_cDNA_ONT_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x14 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/IsoQuant_cDNA_ONT_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x15 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/LAPA_cDNA_ONT_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x16 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
p3 <- ggarrange(x11,x12,x13,x14,x15,NULL,x16,NULL,NULL,ncol = 9, align = "v",hjust=0)
## H1-mix cDNA PacBio
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/Bambu_cDNA_PacBio_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x17 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/BambuLR_cDNA_PacBio_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x18 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/FLAIR_cDNA_PacBio_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x19 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/IsoQuant_cDNA_PacBio_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x20 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/IsoTools_cDNA_PacBio_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x21 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/LAPA_cDNA_PacBio_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x22 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
p4 <- ggarrange(x17,x18,x19,NULL,x20,x21,x22,NULL,NULL,ncol = 9, align = "v",hjust=0)
## H1-mix dRNA ONT
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/Bambu_dRNA_ONT_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x23 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/BambuLR_dRNA_ONT_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x24 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/FLAIR_dRNA_ONT_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x25 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/FLAMES_dRNA_ONT_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x26 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/IsoQuant_dRNA_ONT_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x27 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/LAPA_dRNA_ONT_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x28 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/NanoSim_dRNA_ONT_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x29 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
p5 <- ggarrange(x23,x24,x25,x26,x27,NULL,x28,x29,NULL,ncol = 9, align = "v",hjust=0)
## H1-mix R2C2 ONT
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/Bambu_R2C2_ONT_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x30 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/BambuLR_R2C2_ONT_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x31 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/IsoQuant_R2C2_ONT_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x32 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/LAPA_R2C2_ONT_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x33 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
p6 <- ggarrange(x30,x31,NULL,NULL,x32,NULL,x33,NULL,NULL,ncol = 9, align = "v",hjust=0)
## H1-mix cDNA Illumina
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/RSEM_cDNA_Illumina_H1-mix_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x34 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#C0504D') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
p7 <- ggarrange(NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,x34,ncol = 9, align = "v",hjust=0)
H1_mix <- ggarrange(p1,p2,p3,p4,p5,p6,p7,nrow = 7, align = "v",hjust=0)
## WTC11 CapTrap ONT
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/Bambu_CapTrap_ONT_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x1 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/BambuLR_CapTrap_ONT_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x2 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/FLAMES_CapTrap_ONT_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x3 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/IsoQuant_CapTrap_ONT_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x4 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/LAPA_CapTrap_ONT_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x5 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
p1 <- ggarrange(x1,x2,NULL,x3,x4,NULL,x5,NULL,NULL,ncol = 9, align = "v",hjust=0)
## WTC11 CapTrap PacBio
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/Bambu_CapTrap_PacBio_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x6 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/BambuLR_CapTrap_PacBio_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x7 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/FLAMES_CapTrap_PacBio_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x8 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/IsoQuant_CapTrap_PacBio_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x9 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/LAPA_CapTrap_PacBio_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x10 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
p2 <- ggarrange(x6,x7,NULL,x8,x9,NULL,x10,NULL,NULL,ncol = 9, align = "v",hjust=0)
## WTC11 cDNA ONT
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/Bambu_cDNA_ONT_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x11 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/BambuLR_cDNA_ONT_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x12 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/FLAIR_cDNA_ONT_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x13 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/FLAMES_cDNA_ONT_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x14 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/IsoQuant_cDNA_ONT_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x15 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/LAPA_cDNA_ONT_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x16 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
p3 <- ggarrange(x11,x12,x13,x14,x15,NULL,x16,NULL,NULL,ncol = 9, align = "v",hjust=0)
## WTC11 cDNA PacBio
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/Bambu_cDNA_PacBio_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x17 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/BambuLR_cDNA_PacBio_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x18 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/FLAIR_cDNA_PacBio_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x19 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/IsoQuant_cDNA_PacBio_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x20 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/IsoTools_cDNA_PacBio_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x21 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/LAPA_cDNA_PacBio_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x22 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
p4 <- ggarrange(x17,x18,x19,NULL,x20,x21,x22,NULL,NULL,ncol = 9, align = "v",hjust=0)
## WTC11 dRNA ONT
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/Bambu_dRNA_ONT_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x23 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/BambuLR_dRNA_ONT_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x24 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/FLAIR_dRNA_ONT_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x25 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/FLAMES_dRNA_ONT_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x26 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/IsoQuant_dRNA_ONT_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x27 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/LAPA_dRNA_ONT_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x28 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/NanoSim_dRNA_ONT_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x29 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
p5 <- ggarrange(x23,x24,x25,x26,x27,NULL,x28,x29,NULL,ncol = 9, align = "v",hjust=0)
## WTC11 R2C2 ONT
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/Bambu_R2C2_ONT_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x30 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/BambuLR_R2C2_ONT_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x31 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/IsoQuant_R2C2_ONT_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x32 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/LAPA_R2C2_ONT_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x33 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
p6 <- ggarrange(x30,x31,NULL,NULL,x32,NULL,x33,NULL,NULL,ncol = 9, align = "v",hjust=0)
## WTC11 cDNA Illumina
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/RSEM_cDNA_Illumina_WTC11_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x34 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#4F81BD') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
p7 <- ggarrange(NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,x34,ncol = 9, align = "v",hjust=0)
WTC11 <- ggarrange(p1,p2,p3,p4,p5,p6,p7,nrow = 7, align = "v",hjust=0)
## H1-hESC CapTrap ONT
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/Bambu_CapTrap_ONT_H1-hESC_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x1 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#8064A2') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/FLAMES_CapTrap_ONT_H1-hESC_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x3 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#8064A2') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/IsoQuant_CapTrap_ONT_H1-hESC_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x4 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#8064A2') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/LAPA_CapTrap_ONT_H1-hESC_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x5 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#8064A2') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
p1 <- ggarrange(x1,NULL,NULL,x3,x4,NULL,x5,NULL,NULL,ncol = 9, align = "v",hjust=0)
## H1-hESC CapTrap PacBio
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/Bambu_CapTrap_PacBio_H1-hESC_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x6 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#8064A2') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/FLAMES_CapTrap_PacBio_H1-hESC_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x8 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#8064A2') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/IsoQuant_CapTrap_PacBio_H1-hESC_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x9 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#8064A2') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/LAPA_CapTrap_PacBio_H1-hESC_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x10 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#8064A2') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
p2 <- ggarrange(x6,NULL,NULL,x8,x9,NULL,x10,NULL,NULL,ncol = 9, align = "v",hjust=0)
## H1-hESC cDNA ONT
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/Bambu_cDNA_ONT_H1-hESC_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x11 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#8064A2') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/FLAIR_cDNA_ONT_H1-hESC_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x13 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#8064A2') +
theme_bw() + theme(panel.grid=element_blank()) +
theme(legend.position="none",axis.title.y=element_blank(),axis.title.x=element_blank(),axis.text.y=element_blank(),axis.text.x=element_blank()) +
scale_y_continuous(limits=c(0, 1.5), breaks = seq(0,1.5,1.5)) +
scale_x_continuous(limits=c(1, 10), breaks = seq(1,10,9))
dat <- read.table('Challenge2_Figures_Data/RNA-seq_data/COV_plot_data/FLAMES_cDNA_ONT_H1-hESC_COV.txt',header = F, sep = "\t");
names(dat) <- c('V1','V2','V3','V4','V5','V6');
x14 <- ggplot(data = dat, mapping = aes(x = V1,y = V2)) +
geom_line(size=0.5,color='#8064A2') +
theme_bw() + theme(panel.grid=element_blank()) +