-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinterpolator.py
executable file
·382 lines (311 loc) · 16.5 KB
/
interpolator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
#-------------------------------------------------------------------------------
#
# Signed Distances Function Interpolator
# **************************************
#
# This SGeMS plugin interpolates (OK) the signed distance function calculated
# for each data and rock type, and creates a geologic model based on the minimum
# estimated distance.
#
# AUTHOR: Roberto Mentzingen Rolo
#
#-------------------------------------------------------------------------------
#!/bin/python
import sgems
import math
import numpy as np
import random
import copy
#Creates a randon path given the size of the grid
def random_path(prop):
nodes_not_nan = []
for i in range(len(prop)):
if not math.isnan(prop[i]):
nodes_not_nan.append(i)
random.shuffle(nodes_not_nan)
return nodes_not_nan
#Calculates the proportions of variables on a list
def proportion(var, RT):
rock_types =[]
target_prop = []
for k in range(len(RT)):
target_prop.append(0)
rock_types.append(int(RT[k].split('RT_')[-1]))
rock_types.sort()
var_not_nan = []
for i in var:
if not math.isnan(i):
var_not_nan.append(i)
for i in range(len(rock_types)):
target_prop[i] = float(var.count(rock_types[i]))/len(var_not_nan)
return target_prop
#Transform i,j,k in n
def ijk_in_n(grid, i, j, k):
dims = sgems.get_dims(grid)
n = k*dims[0]*dims[1]+j*dims[0]+i
return n
#Crestes a list with indices of the neighbors valid blocks
def neighb(grid, indice):
ijk = sgems.get_ijk(grid, indice)
neighborhood = []
for i in range(ijk[0]-1,ijk[0]+2):
for j in range(ijk[1]-1,ijk[1]+2):
for k in range(ijk[2]-1,ijk[2]+2):
ijk_blk = [i,j,k]
neighborhood.append(ijk_blk)
dims = sgems.get_dims(grid)
neighborhood_cp = copy.copy(neighborhood)
for i in neighborhood_cp:
if dims[2] == 1:
if i[0] < 0 or i[1] < 0:
neighborhood.remove(i)
elif i[0] > (dims[0] - 1) or i[1] > (dims[1] - 1):
neighborhood.remove(i)
elif i[2] != 0:
neighborhood.remove(i)
elif i == sgems.get_ijk(grid, indice):
neighborhood.remove(i)
else:
if i[0] < 0 or i[1] < 0 or i[2] < 0:
neighborhood.remove(i)
elif i[0] > (dims[0] - 1) or i[1] > (dims[1] - 1) or i[2] > (dims[2] - 1):
neighborhood.remove(i)
elif i == sgems.get_ijk(grid, indice):
neighborhood.remove(i)
neighborhood_n = []
for i in neighborhood:
neighborhood_n.append(ijk_in_n(grid,i[0],i[1],i[2]))
return neighborhood_n
# Shows every parameter of the plugin in the command pannel
def read_params(a, j=''):
for i in a:
if (type(a[i]) != type({'a': 1})):
print j + "['" + str(i) + "']=" + str(a[i])
else:
read_params(a[i], j + "['" + str(i) + "']")
class interpolator:
def __init__(self):
pass
def initialize(self, params):
self.params = params
return True
def execute(self):
'''# Execute the funtion read_params
read_params(self.params)
print self.params'''
#Get the grid and rock type propery
grid = self.params['propertyselectornoregion']['grid']
prop = self.params['propertyselectornoregion']['property']
#Get the X, Y and Z coordinates and RT property
X = sgems.get_property(grid, '_X_')
Y = sgems.get_property(grid, '_Y_')
Z = sgems.get_property(grid, '_Z_')
RT_data = sgems.get_property(grid, prop)
# Getting properties
grid_krig = self.params['gridselectorbasic_2']['value']
grid_var = self.params['gridselectorbasic']['value']
props = (self.params['orderedpropertyselector']['value']).split(';')
n_var = int(self.params['indicator_regionalization_input']['number_of_indicator_group'])
n_prop = int(self.params['orderedpropertyselector']['count'])
min_cond = self.params['spinBox_2']['value']
max_cond = self.params['spinBox']['value']
# Error messages
if len(grid_var) == 0 or len(grid_krig) == 0:
print 'Select the variables'
return False
if n_var != n_prop:
print 'Number of variables and number of variograms models are diferent.'
return False
#Creating an empty list to store the interpolated distances
SG_OK_list = []
# Loop in every variable
for i in xrange(0, n_var):
# Getting variables
prop_HD = props[i]
prop_name = "Interpolated_" + str(prop_HD)
prop_name_var = "Interpolated_" + str(prop_HD) + ' krig_var'
var_str = ''
indicator_group = "Indicator_group_" + str(i + 1)
elipsoide = self.params['ellipsoidinput']['value']
n_struct = int(self.params['indicator_regionalization_input'][indicator_group]['Covariance_input']['structures_count'])
# Error message
if n_struct == 0:
print 'Variogram have no structures'
return False
# Loop in every variogram structure
for j in xrange(0, n_struct):
# Getting variogram parameters
Structure = "Structure_" + str(j + 1)
cov_type = self.params['indicator_regionalization_input'][indicator_group]['Covariance_input'][Structure]['Two_point_model']['type']
cont = self.params['indicator_regionalization_input'][indicator_group]['Covariance_input'][Structure]['Two_point_model']['contribution']
if cov_type == 'Nugget Covariance':
#Writing variogram parameters on a variable in nugget effect case
var_str = var_str + '<{} type="{}"> <Two_point_model contribution="{}" type="{}" > </Two_point_model> </Structure_1> '.format(Structure, 'Covariance', cont, cov_type, Structure)
else:
range1 = self.params['indicator_regionalization_input'][indicator_group]['Covariance_input'][Structure]['Two_point_model']['ranges']['range1']
range2 = self.params['indicator_regionalization_input'][indicator_group]['Covariance_input'][Structure]['Two_point_model']['ranges']['range2']
range3 = self.params['indicator_regionalization_input'][indicator_group]['Covariance_input'][Structure]['Two_point_model']['ranges']['range3']
rake = self.params['indicator_regionalization_input'][indicator_group]['Covariance_input'][Structure]['Two_point_model']['angles']['rake']
dip = self.params['indicator_regionalization_input'][indicator_group]['Covariance_input'][Structure]['Two_point_model']['angles']['dip']
azimuth = self.params['indicator_regionalization_input'][indicator_group]['Covariance_input'][Structure]['Two_point_model']['angles']['azimuth']
# Writing variogram parameters on a variable in other cases
var_str = var_str + '<{} type="{}"> <Two_point_model contribution="{}" type="{}" > <ranges range1="{}" range2="{}" range3="{}" /> <angles azimuth="{}" dip="{}" rake="{}" /> </Two_point_model> </{}> '.format(Structure, 'Covariance', cont, cov_type, range1, range2, range3, azimuth, dip, rake, Structure)
# Calling ordinary kriging for each variable, using the variograms parameters above
sgems.execute('RunGeostatAlgorithm kriging::/GeostatParamUtils/XML::<parameters> <algorithm name="kriging" /> <Variogram structures_count="{}" > {} </Variogram> <ouput_kriging_variance value="1" /> <output_n_samples_ value="0" /> <output_average_distance value="0" /> <output_sum_weights value="0" /> <output_sum_positive_weights value="0" /> <output_lagrangian value="0" /> <Nb_processors value="-2" /> <Grid_Name value="{}" region="" /> <Property_Name value="{}" /> <Hard_Data grid="{}" property="{}" region="" /> <Kriging_Type type="Ordinary Kriging (OK)" > <parameters /> </Kriging_Type> <do_block_kriging value="1" /> <npoints_x value="5" /> <npoints_y value="5" /> <npoints_z value="5" /> <Min_Conditioning_Data value="{}" /> <Max_Conditioning_Data value="{}" /> <Search_Ellipsoid value="{}" /> <AdvancedSearch use_advanced_search="0"></AdvancedSearch> </parameters>'.format(n_struct, var_str, grid_krig, prop_name, grid_var, prop_HD, min_cond, max_cond, elipsoide))
SG_OK_list.append(sgems.get_property(grid_krig, prop_name))
#Deleting kriged distances
sgems.execute('DeleteObjectProperties {}::{}'.format(grid_krig, prop_name))
sgems.execute('DeleteObjectProperties {}::{}'.format(grid_krig, prop_name_var))
RT = (self.params['orderedpropertyselector']['value']).split(';')
#Determinig geomodel based on minimum estimed signed distance function
GeoModel = SG_OK_list[0][:]
t = 0
for i in range(len(SG_OK_list[0])):
sgmin = 10e21
for j in range(len(SG_OK_list)):
if SG_OK_list[j][i] < sgmin:
sgmin = SG_OK_list[j][i]
t = j
if math.isnan(SG_OK_list[j][i]):
GeoModel[i] = float('nan')
else:
GeoModel[i] = (int(RT[t].split('RT_')[-1]))
#Creating GeoModel property
lst_props_grid=sgems.get_property_list(grid_krig)
prop_final_data_name = 'Geologic_Model'
if (prop_final_data_name in lst_props_grid):
flag=0
i=1
while (flag==0):
test_name=prop_final_data_name+'-'+str(i)
if (test_name not in lst_props_grid):
flag=1
prop_final_data_name=test_name
i=i+1
#Assign conditioning data to grid node
for i in range(len(RT_data)):
if not math.isnan(RT_data[i]):
closest_node = sgems.get_closest_nodeid(grid_krig, X[i],Y[i],Z[i])
GeoModel[closest_node] = RT_data[i]
sgems.set_property(grid_krig, prop_final_data_name, GeoModel)
#Operating softmax transformation
if self.params['softmax_check']['value']=='1':
gamma =float( self.params['Gamma']['value'])
Prob_list = SG_OK_list[:]
for i in range(len(SG_OK_list[0])):
soma = 0
for j in range(len(SG_OK_list)):
soma = soma + math.exp(-SG_OK_list[j][i]/gamma)
for j in range(len(SG_OK_list)):
Prob_list[j][i] = math.exp(-SG_OK_list[j][i]/gamma)/soma
#Creating probabilities propreties
for k in range(len(Prob_list)):
prop_final_data_name = 'Probability_RT'+str(RT[k].split('RT_')[-1])
if (prop_final_data_name in lst_props_grid):
flag=0
i=1
while (flag==0):
test_name=prop_final_data_name+'-'+str(i)
if (test_name not in lst_props_grid):
flag=1
prop_final_data_name=test_name
i=i+1
sgems.set_property(grid_krig, prop_final_data_name, Prob_list[k])
#Operating servo-system
if self.params['servo_check']['value'] == '1':
var_rt_grid = self.params['targe_prop']['grid']
var_rt_st = self.params['targe_prop']['property']
var_rt_region = self.params['targe_prop']['region']
if len(var_rt_grid) == 0 or len(var_rt_st) == 0:
print 'Select the target proportion property'
return False
#Getting variables
var_rt = sgems.get_property(var_rt_grid, var_rt_st)
#Getting parameters
lambda1 = float(self.params['Lambda']['value'])
mi = lambda1/(1-lambda1)
#Checking if a region exist
if len(var_rt_region) == 0:
#Variable without a region
var_region = var_rt
else:
region_rt = sgems.get_region(var_rt_grid, var_rt_region)
#Geting the variable inside the region
var_region = []
for i in range(len(var_rt)):
if region_rt[i] == 1:
var_region.append(var_rt[i])
#Getting the target proportion
target_prop = proportion(var_region, RT)
#Getting the random path
ran_path = random_path(Prob_list[0])
#Removing the blocks outside the region from randon path
if len(var_rt_region) != 0:
for i in range(len(region_rt)):
if region_rt[i] == 0:
ran_path.remove(i)
#servo system
p = 0
GeoModel_corrected = GeoModel[:]
visited_rts = []
for j in ran_path:
visited_rts.append(GeoModel[j])
instant_proportions = proportion(visited_rts,RT)
sgmax = 10e-21
for i in range(len(Prob_list)):
Prob_list[i][j] = Prob_list[i][j] + (mi * (target_prop[i] - instant_proportions[i]))
if Prob_list[i][j] > sgmax:
sgmax = Prob_list[i][j]
p = i
GeoModel_corrected[j] = int(RT[p][-1])
visited_rts[-1] = int(RT[p].split('RT_')[-1])
#Correcting servo servo-system by the biggest proportion on a neighborhood
GeoModel_corrected_servo_prop = GeoModel_corrected[:]
ran_path_servo_correction = random_path(GeoModel_corrected_servo_prop)
for i in ran_path_servo_correction:
vizinhanca = neighb(grid_krig,i)
blk_geo_model_corrected_servo = []
for j in vizinhanca:
blk_geo_model_corrected_servo.append(GeoModel_corrected_servo_prop[j])
proportions_servo = proportion(blk_geo_model_corrected_servo, RT)
indice_max_prop = proportions_servo.index(max(proportions_servo))
GeoModel_corrected_servo_prop[i] = int(RT[indice_max_prop].split('RT_')[-1])
#Creating Geologic_Model_Servo_System property
prop_final_data_name = 'Geologic_Model_Servo_System'
if (prop_final_data_name in lst_props_grid):
flag=0
i=1
while (flag==0):
test_name=prop_final_data_name+'-'+str(i)
if (test_name not in lst_props_grid):
flag=1
prop_final_data_name=test_name
i=i+1
#Creating Geologic_Model_Corrected property
prop_final_data_name1 = 'Geologic_Model_Corrected'
if (prop_final_data_name1 in lst_props_grid):
flag=0
i=1
while (flag==0):
test_name1=prop_final_data_name1+'-'+str(i)
if (test_name1 not in lst_props_grid):
flag=1
prop_final_data_name1=test_name1
i=i+1
#Assign conditioning data to grid node
for i in range(len(RT_data)):
if not math.isnan(RT_data[i]):
closest_node = sgems.get_closest_nodeid(grid_krig, X[i],Y[i],Z[i])
GeoModel_corrected[closest_node] = RT_data[i]
GeoModel_corrected_servo_prop[closest_node] = RT_data[i]
#Setting properties
sgems.set_property(grid_krig, prop_final_data_name, GeoModel_corrected)
sgems.set_property(grid_krig, prop_final_data_name1, GeoModel_corrected_servo_prop)
return True
def finalize(self):
return True
def name(self):
return "interpolator"
################################################################################
def get_plugins():
return ["interpolator"]