forked from Vincentqyw/cv-arxiv-daily
-
Notifications
You must be signed in to change notification settings - Fork 0
/
arXiv_daily.py
226 lines (182 loc) · 6.89 KB
/
arXiv_daily.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import datetime
from tkinter import N
import requests
import json
import arxiv
import os
base_url = "https://arxiv.paperswithcode.com/api/v0/papers/"
def get_authors(authors, first_author = False):
output = str()
if first_author == False:
output = ", ".join(str(author) for author in authors)
else:
output = authors[0]
return output
def sort_papers(papers):
output = dict()
keys = list(papers.keys())
keys.sort(reverse=True)
for key in keys:
output[key] = papers[key]
return output
def get_daily_papers(topic,query="GANs", max_results=2):
"""
@param topic: str
@param query: str
@return paper_with_code: dict
"""
# output
content = dict()
content_to_web = dict()
# content
output = dict()
search_engine = arxiv.Search(
query = query,
max_results = max_results,
sort_by = arxiv.SortCriterion.SubmittedDate
)
cnt = 0
for result in search_engine.results():
paper_id = result.get_short_id()
paper_title = result.title
paper_url = result.entry_id
code_url = base_url + paper_id
paper_abstract = result.summary.replace("\n"," ")
paper_authors = get_authors(result.authors)
paper_first_author = get_authors(result.authors,first_author = True)
primary_category = result.primary_category
publish_time = result.published.date()
update_time = result.updated.date()
comments = result.comment
'''
print("Time = ", update_time ,
" title = ", paper_title,
" author = ", paper_first_author)
'''
# eg: 2108.09112v1 -> 2108.09112
ver_pos = paper_id.find('v')
if ver_pos == -1:
paper_key = paper_id
else:
paper_key = paper_id[0:ver_pos]
try:
r = requests.get(code_url).json()
# source code link
cnt += 1
repo_url = r["official"]["url"]
if repo_url == 'null':
continue
content[paper_key] = f"|**{update_time}**|**{paper_title}**|{paper_first_author} et.al.|[{paper_id}]({paper_url})|**[link]({repo_url})**|\n"
content_to_web[paper_key] = f"- {update_time}, **{paper_title}**, {paper_first_author} et.al., Paper: [{paper_url}]({paper_url}), Code: **[{repo_url}]({repo_url})**"
# TODO: select useful comments
comments = None
if comments != None:
content_to_web[paper_key] = content_to_web[paper_key] + f", {comments}\n"
else:
content_to_web[paper_key] = content_to_web[paper_key] + f"\n"
except Exception as e:
continue
data = {topic:content}
data_web = {topic:content_to_web}
return data,data_web
def update_json_file(filename,data_all):
with open(filename,"a+") as f:
content = f.read()
if not content:
m = {}
else:
m = json.loads(content)
json_data = m.copy()
# update papers in each keywords
for data in data_all:
for keyword in data.keys():
papers = data[keyword]
if keyword in json_data.keys():
json_data[keyword].update(papers)
else:
json_data[keyword] = papers
with open(filename,"w") as f:
json.dump(json_data,f)
def json_to_md(filename,md_filename,to_web = False, use_title = True):
"""
@param filename: str
@param md_filename: str
@return None
"""
DateNow = datetime.date.today()
DateNow = str(DateNow)
DateNow = DateNow.replace('-','.')
with open(filename,"r") as f:
content = f.read()
if not content:
data = {}
else:
data = json.loads(content)
# clean README.md if daily already exist else create it
with open(md_filename,"w+") as f:
pass
# write data into README.md
with open(md_filename,"a+") as f:
if (use_title == True) and (to_web == True):
f.write("---\n" + "layout: default\n" + "---\n\n")
f.write("论文 | [项目中文简介](https://github.com/LJoson/arXiv_daily/blob/main/README_zh-CN.md)\n\n")
if use_title == True:
f.write("## Updated on " + DateNow + "\n\n")
else:
f.write("> Updated on " + DateNow + "\n\n")
for keyword in data.keys():
day_content = data[keyword]
if not day_content:
continue
# the head of each part
f.write(f"## {keyword}\n\n")
if use_title == True :
if to_web == False:
f.write("|Publish Date|Title|Authors|PDF|Code|\n" + "|---|---|---|---|---|\n")
else:
f.write("| Publish Date | Title | Authors | PDF | Code |\n")
f.write("|:---------|:-----------------------|:---------|:------|:------|\n")
# sort papers by date
day_content = sort_papers(day_content)
for _,v in day_content.items():
if v is not None:
f.write(v)
f.write(f"\n")
print("finished")
if __name__ == "__main__":
data_collector = []
data_collector_web= []
keywords = dict()
keywords["GAN"] = "GANs"+"OR"+"generative"+"OR"+"Generation"+"OR"+"Generative"+"GAN"+"OR"+"StyleGAN"
keywords["NeRF"] = "NeRF"+"OR"+"\"Neural Radiance Fields\""
keywords["Visual Localization"] = "\"Camera Localization\"OR\"Visual Localization\"OR\"Camera Re-localisation\"OR\"Loop Closure Detection\"OR\"visual place recognition\""
keywords["Image Matching"] = "\"Image Matching\""
keywords["Keypoint Detection"] = "\"Keypoint Detection\"OR\"Feature Descriptor\""
for topic,keyword in keywords.items():
# topic = keyword.replace("\"","")
print("Keyword: " + topic)
data,data_web = get_daily_papers(topic, query = keyword, max_results = 50)
data_collector.append(data)
data_collector_web.append(data_web)
print("\n")
# 1. update README.md file
json_file = "arXiv_daily.json"
md_file = "README.md"
# update json data
update_json_file(json_file,data_collector)
# json data to markdown
json_to_md(json_file,md_file)
# 2. update docs/index.md file
json_file = "./docs/arXiv_daily_web.json"
md_file = "./docs/index.md"
# update json data
update_json_file(json_file,data_collector)
# json data to markdown
json_to_md(json_file, md_file, to_web = True)
# 3. Update docs/wechat.md file
json_file = "./docs/arXiv_daily_wechat.json"
md_file = "./docs/wechat.md"
# update json data
update_json_file(json_file, data_collector_web)
# json data to markdown
json_to_md(json_file, md_file, to_web=False, use_title= False)