-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGrayfy_Image_BlackExtraction.py
55 lines (46 loc) · 1.68 KB
/
Grayfy_Image_BlackExtraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import tkinter as tk
import tkinter.ttk
import tkinter.messagebox
import os
import os.path
import cv2
import numpy as np
from PIL import Image, ImageTk
'''读取图像'''
# Read the image as grayscale
img = cv2.imread('E:\homework_img_deal\original/w12-1.jpg')
'''算法实现部分'''
# 将图像转换为HSV颜色空间
hsv_image = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# 定义黑色的HSV范围
lower_black = (0, 0, 0)
upper_black = (360, 100, 150)
# 创建掩膜
mask = cv2.inRange(hsv_image, lower_black, upper_black)
mask_ = 255-mask
# 对图像进行分割,提取黑色部分
result = cv2.bitwise_and(img, img, mask=mask)
'''算法实现部分'''
# Apply adaptive thresholding
img_ = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
thresh = cv2.adaptiveThreshold(img_, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)
img_filtered=thresh.copy()
for i in range(7):
# Apply median filter to remove salt-and-pepper noise
img_filtered = cv2.medianBlur(img_filtered, 3)
# Apply bilateral filter to preserve edges and details
img_filtered = cv2.bilateralFilter(img_filtered, 7, 75, 75)
'''图像合成'''
# result = 255-(mask & (255-img_filtered))
# 设置合成比例(两张图像的权重)
alpha = 0.3
beta = 0.7
blended_image = cv2.addWeighted(mask_, alpha, img_filtered, beta, 0.0)
'''展示图像'''
# Display the thresholded image
# cv2.imshow('Mask Image', cv2.resize(mask_,(0,0),fx=0.25,fy=0.25))
# cv2.imshow('Result Image', cv2.resize(result,(0,0),fx=0.25,fy=0.25))
cv2.imshow('Blended Image', cv2.resize(blended_image,(0,0),fx=0.2,fy=0.2))
# cv2.imshow('Image', cv2.resize(np.hstack((mask_,img_filtered,result)),(0,0),fx=0.2,fy=0.2))
cv2.waitKey(0)
cv2.destroyAllWindows()