-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinstructions.html.01202016
102 lines (75 loc) · 3.16 KB
/
instructions.html.01202016
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
<!DOCTYPE html>
<meta charset="utf-8">
<head>
<title>Spark Instructions</title>
<link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
<style>
body {
background-color: lightCyan;
margin-left: 5%;
margin-right: 5%;
margin-top: 5%;
margin-bottom: 5%;
}
.container {width:900px;
margin-left: auto;
margin-right: auto;
width: 70%;
padding:15px;
border:1px solid #cccccc;
background:#ffffff;
}
#instList {
font-family: "Arial";
font-size: 18px;
list-style-type: none;
}
#instListLi {
font-family: "Arial";
font-size: 18px;
list-style-type: none;
margin:0 20px 20px 0;
color: DarkSlateGray;
}
h2 {
font-family: "Georgia";
font-size: 24px;
color: DarkBlue;
}
h1 {
font-family: "Georgia";
font-size: 24px;
color: DarkBlue;
}
p {
font-family: "Arial";
font-size: 18px;
color: DarkSlateGray;
}
</style>
</head>
<body>
<div class="container">
<h1>Spark Knowledge Discovery Tool Prototype</h1>
<p>The Spark Knowledge Discovery Tool leverages findings from research to assist users in discovering new information (1).
Serendipitous Knowledge Discovery (SKD), a widely-researched information-seeking behavior, is the coincidental discovery of useful information.
The graphs produced by this tool consist of assertions, in the form of subject-predicate-object semantic predications. These predications, a product of SemRep (2), are extracted from <a href="http://www.pubmed.gov">PubMed</a> citations.</p>
<br></br>
<h2>Basic Instructions:</h2>
<ul id="instList">
<li id="instListLi">Enter a query in the text box on the upper-left, by Enter Concept(s), and click Search.</li>
<li id="instListLi">Click on one of the five randomization options to the right (the All, Common, or Rare, buttons, or from one of the drop-down menus). This will produce an SKD graph of manageable size, composed of semantic predications in links and nodes.</li>
<li id="instListLi">Click on a link between nodes in the graph to view the original text and PubMed access; click again to hide them.</li>
<li id="instListLi">Hover the cursor over a link to just see its full predication.</li>
<li id="instListLi">Double-Click on a link to transfer its predication to the workspace on the right. Again, access the sentence by clicking on a link, or the full predication by hovering the cursor over the link, in the same fashion.</li>
<li id="instListLi">Manipulate graph elements by dragging nodes.</li>
<li id="instListLi">Use the buttons on the bottom to discard, save, or reopen graphs. Click on a predication's link in the workspace and click Delete Predication to delete a single predication.</li>
</ul>
<br></br>
<footer>
<p>(1) See Workman, et al., <a href="http://onlinelibrary.wiley.com/doi/10.1002/asi.22999/abstract">Framing serendipitous information-seeking behavior for facilitating literature-based discovery: A proposed model</a> JASIST March 2014 65(3): 501-512. </p>
<p>(2) See Rindflesch and Fiszman, <a href="http://skr.nlm.nih.gov/papers/references/semspec_jbi.11.ss.pdf">The interaction of domain knowledge and linguistic structure in natural language processing: interpreting hypernymic propositions in biomedical text</a> J Biomed Inform Dec 2003 36(6): 462-477. </p>
</footer>
</div>
</body>
</html>