We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
@LCH1238 作者你好,感谢你的开源。 有个问题请教你: 由于你的代码中使用去掉pre-process-net模块的模型转换和推理的,而我的模型中有pre-process-net模块,所以我修改转模型的代码,将自己的模型转成三个阶段,分别是image-stage-4d-depth,pre-process-stage-4d-depth,bev-stage-4d-depth。 InitEngine()中,三个模型的输入输出维度是:
image-stage-4d-depth
pre-process-stage-4d-depth
bev-stage-4d-depth
InitEngine()
images : 6 3 512 1408 rot : 1 6 3 3 trans : 1 6 3 intrin : 1 6 3 3 post_rot : 1 6 3 3 post_trans : 1 6 3 bda : 1 3 3 depth : 6 118 32 88 images_feat : 6 32 88 80 pre_process_input : 1 80 128 128 pre_process_output : 1 80 128 128 BEV_feat : 1 160 128 128 reg_0 : 1 2 128 128 height_0 : 1 1 128 128 dim_0 : 1 3 128 128 rot_0 : 1 2 128 128 vel_0 : 1 2 128 128 heatmap_0 : 1 10 128 128
我对推理代码做了如下修改:
bev_pool_v2(bevpool_channel, unique_bev_num, bev_h * bev_w, (float*)imgstage_buffer[imgbuffer_map["depth"]], (float*)imgstage_buffer[imgbuffer_map["images_feat"]], ranks_depth_dev, ranks_feat_dev, ranks_bev_dev, interval_starts_dev, interval_lengths_dev, // (float*)bevstage_buffer[bevbuffer_map["BEV_feat"]]//out (float*)preprocessstage_buffer[preprocessbuffer_map["pre_process_input"]] );
if(!preprocessstage_context->enqueueV2(preprocessstage_buffer, stream, nullptr)){ printf("Pre-peocess stage forward failing!\n"); } CHECK_CUDA(cudaDeviceSynchronize());
CHECK_CUDA(cudaMemcpy((float*)bevstage_buffer[bevbuffer_map["BEV_feat"]], (float*)preprocessstage_buffer[preprocessbuffer_map["pre_process_output"]], bev_h * bev_w * bevpool_channel * sizeof(float), cudaMemcpyDeviceToDevice));
最后依次进行align BEV feature 、BEV stage network forward、post process
我训练得到的pth模型的mAP=0.43,并不算低,但是转化为tensorrt后,用上述的推理代码,和本仓库提供的sample,输出结果只有16个object,而且使用viewer.py可视化我的推理结果,发现检测框并不在点云目标上。 请问你知道原因吗?或者我修改的推理代码逻辑是否正确? 期待你的回复!
viewer.py
The text was updated successfully, but these errors were encountered:
No branches or pull requests
@LCH1238 作者你好,感谢你的开源。
有个问题请教你:
由于你的代码中使用去掉pre-process-net模块的模型转换和推理的,而我的模型中有pre-process-net模块,所以我修改转模型的代码,将自己的模型转成三个阶段,分别是
image-stage-4d-depth
,pre-process-stage-4d-depth
,bev-stage-4d-depth
。InitEngine()
中,三个模型的输入输出维度是:我对推理代码做了如下修改:
最后依次进行align BEV feature 、BEV stage network forward、post process
我训练得到的pth模型的mAP=0.43,并不算低,但是转化为tensorrt后,用上述的推理代码,和本仓库提供的sample,输出结果只有16个object,而且使用
viewer.py
可视化我的推理结果,发现检测框并不在点云目标上。请问你知道原因吗?或者我修改的推理代码逻辑是否正确?
期待你的回复!
The text was updated successfully, but these errors were encountered: