-
Notifications
You must be signed in to change notification settings - Fork 3
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Implementing PAS on indepdendent dataset and own algorithm (K-FOLD CV, HPO integration) #5
Comments
Hello, Thank you for this great work. I want to implement PAS on a custom dataset in my own pipeline (K-FOLD CV, HPO integration). Could you please advice on how to do that. Thanks! |
Hi, I further downloaded your code and tried to implement this in my pipeline. It is not clear though where 'DARTS training' is invoked ? Is it in the model_search.py module ? Then we ask why is 'SANE' mentioned under 'model' params in args list. The second question is, it is not clear in case of implementing any custom data/ dataset not included in your experiment (e.g. ENZYMES dataset), how do we do that ? In args list, under 'data' param if we write 'ENZYMES', it is not clear if it will invoke that dataset. Moreover for custom dataset implementation, how do we do it ? So the questions would be 1)How do we implement ENZYMES dataset wiith your model (search-space and DARTS algorithm) ? 2) How do we implement the same for custom dataset ? 3) Why 'SANE' is given in args list, whereas algorithm is implementing 'DARTS' ? Thanks a lot |
Thank you for your attention.
|
Hi, Thanks a lot for your kind reply. I will try to implement PAS as per your instructions and get back to you in case of any questions. |
New datasets (https://github.com/LARS-research/PAS/blob/main/dataset.py#L55) and splits (https://github.com/LARS-research/PAS/blob/main/dataset.py#L91) can be used in PAS by modifying the code correspondingly. The code is implemented based on PyG, and the non-standard processed data can be re-constructed and then used in PAS following the instructions https://pytorch-geometric.readthedocs.io/en/latest/get_started/introduction.html#data-handling-of-graphs |
Thanks so much for your prompt reply. I wanted to understand, how do I reproduce your model that has been trained say on a custom processed dataset cause reproducing models of DARTS are not straightforward normally. I need to train on a custom dataset and then put that model on a independent test dataset in a different process. So this is like transfer learning. Could you please let me know if your current code would allow me with this opportunity ?How will the model produced by PAS, be transferred on a independent dataset (suppose that we are saving the K-FOLD CV yielded model and later in a independent process/code trying to reproduce that on new data NOT doing any K-FOLD CV/training and just testing). |
No description provided.
The text was updated successfully, but these errors were encountered: