Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

n_jobs para and parallel issues #149

Open
ZYFno996 opened this issue Jul 26, 2024 · 0 comments
Open

n_jobs para and parallel issues #149

ZYFno996 opened this issue Jul 26, 2024 · 0 comments

Comments

@ZYFno996
Copy link

您好,我使用了两个版本的python做了测试,发现传入n_jobs参数均无法实现满负载的多核并行计算,每个核心占用平均~40%。
image

作为对照,同样的数据和配置使用sklearn-RandomForest测试,python 3.8下能够实现满负荷计算,且有效缩短计算时间,python 3.7下负载只有~60%,效率提升有限。
image

版本信息:
CPU: AMD EPYC 7532 (64C128T)
MEM: DDR4 2666 128G (4 channels)
OS: Windows Server 2022

测试信息:
python 3.7 & 3.8
numpy 1.12 & 1.23
n_jobs=-1 & 8 & 32 & 60

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant