-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtest_reconstructions.py
71 lines (60 loc) · 2.46 KB
/
test_reconstructions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import math
import random
import torch
import torchvision.io
from vivq import VIVQ
import torchvision.utils as vutils
from utils import transforms, VideoDataset
from torch.utils.data import DataLoader
from matplotlib import pyplot as plt
def load_video(path, clip_len=10, skip_frames=3):
video_transform = torchvision.transforms.Compose([
torchvision.transforms.Resize(128),
torchvision.transforms.CenterCrop(128),
])
video, _, _ = torchvision.io.read_video(path)
video = video.permute(0, 3, 1, 2) / 255.
max_seek = video.shape[0] - (clip_len * skip_frames)
start = math.floor(random.uniform(0., max_seek))
video = video[start:start + (clip_len * skip_frames) + 1:skip_frames]
if video_transform:
video = video_transform(video)
image, video = video[0], video[1:]
return image.unsqueeze(0), video.unsqueeze(0)
path = r"C:\Users\d6582\Documents\ml\phenaki\data\webvid\example_videos\1066656142.mp4"
name = "vivq_2"
device = "cuda"
num_frames = 50
skip_frames = 5
c_hidden = 512
# ckpt_path = "./models/server/vivq_8192_drop_video/model_80000.pt"
ckpt_path = "./models/server/vivq_8192_5_skipframes/model_100000.pt"
model = VIVQ(c_hidden=c_hidden, codebook_size=8192).to(device)
state_dict = torch.load(ckpt_path)
model.load_state_dict(state_dict)
model.eval().requires_grad_(False)
if path is None:
dataset = DataLoader(VideoDataset(video_transform=transforms, clip_len=num_frames, skip_frames=skip_frames), batch_size=1)
image, video = next(iter(dataset))
else:
image, video = load_video(path, clip_len=num_frames, skip_frames=skip_frames)
image, video = image.to(device), video.to(device)
# video = None
reconstruction, _ = model(image, video)
if video is None:
orig = image
# orig = orig[0]
recon = reconstruction[0]
print(f"results/{name}_{num_frames}.mp4")
comp = vutils.make_grid(torch.cat([orig, recon]), nrow=len(orig)).detach().cpu()
else:
orig = torch.cat([image.unsqueeze(1), video], dim=1)
orig = orig[0]
recon = reconstruction[0]
print(f"results/{name}_{num_frames}.mp4")
# torchvision.io.write_video(f"results/{name}_{num_frames}_.mp4", (recon * 255).cpu().permute(0, 2, 3, 1), fps=5)
# torchvision.io.write_video(f"results/{num_frames}_orig_.mp4", (orig * 255).cpu().permute(0, 2, 3, 1), fps=5)
comp = vutils.make_grid(torch.cat([orig, recon]), nrow=len(orig)).detach().cpu()
plt.imshow(comp.permute(1, 2, 0))
plt.show()
vutils.save_image(comp, f"results/{num_frames}.jpg")