-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathmaskgit.py
336 lines (246 loc) · 10 KB
/
maskgit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
"""
Code from lucidrains https://github.com/lucidrains/phenaki-pytorch/blob/main/phenaki_pytorch/phenaki_pytorch.py and modified
"""
import math
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def log(t, eps=1e-20):
return torch.log(t + eps)
def gumbel_noise(t):
noise = torch.zeros_like(t).uniform_(0, 1)
return -log(-log(noise))
def gumbel_sample(t, temperature=1., dim=-1):
return ((t / max(temperature, 1e-10)) + gumbel_noise(t)).argmax(dim=dim)
def top_k(logits, thres=0.5):
num_logits = logits.shape[-1]
k = max(int((1 - thres) * num_logits), 1)
val, ind = torch.topk(logits, k)
probs = torch.full_like(logits, float('-inf'))
probs.scatter_(1, ind, val)
return probs
def FeedForward(dim, mult=4):
inner_dim = int(mult * dim)
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False),
nn.GELU(),
nn.Linear(inner_dim, dim, bias=False)
)
class Attention(nn.Module):
def __init__(
self,
dim,
dim_context=None,
dim_head=64,
heads=8,
causal=False,
num_null_kv=2
):
super().__init__()
self.heads = heads
self.causal = causal
self.scale = dim_head ** -0.5
inner_dim = dim_head * heads
dim_context = default(dim_context, dim)
self.norm = nn.LayerNorm(dim)
self.null_kv = nn.Parameter(torch.randn(heads, 2 * num_null_kv, dim_head))
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim_context, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(
self,
x,
mask=None,
context=None
):
batch, device, dtype = x.shape[0], x.device, x.dtype
kv_input = default(context, x)
x = self.norm(x)
q, k, v = self.to_q(x), *self.to_kv(kv_input).chunk(2, dim=-1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=self.heads), (q, k, v))
q = q * self.scale
nk, nv = repeat(self.null_kv, 'h (n r) d -> b h n r d', b=batch, r=2).unbind(dim=-2)
k = torch.cat((nk, k), dim=-2)
v = torch.cat((nv, v), dim=-2)
sim = einsum('b h i d, b h j d -> b h i j', q, k)
i, j = sim.shape[-2:]
if exists(mask):
mask = F.pad(mask, (j - mask.shape[-1], 0), value=True)
mask = rearrange(mask, 'b j -> b 1 1 j')
sim = sim.masked_fill(~mask, -torch.finfo(sim.dtype).max)
if self.causal:
causal_mask = torch.ones((i, j), device=device, dtype=torch.bool).triu(j - i + 1)
sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max)
attn = sim.softmax(dim=-1)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(
self,
dim,
*,
depth,
dim_context=None,
causal=False,
dim_head=64,
heads=8,
ff_mult=4,
attn_num_null_kv=2,
has_cross_attn=False
):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim=dim, dim_head=dim_head, heads=heads, causal=causal),
Attention(dim=dim, dim_head=dim_head, dim_context=dim_context, heads=heads, causal=False,
num_null_kv=attn_num_null_kv) if has_cross_attn else None,
FeedForward(dim=dim, mult=ff_mult)
]))
self.norm_out = nn.LayerNorm(dim)
def forward(self, x, context=None, mask=None):
for self_attn, cross_attn, ff in self.layers:
x = self_attn(x) + x
if exists(cross_attn) and exists(context):
x = cross_attn(x, context=context, mask=None) + x
x = ff(x) + x
return self.norm_out(x)
class MaskGit(nn.Module):
def __init__(
self,
*,
dim,
num_tokens,
max_seq_len,
**kwargs
):
super().__init__()
self.mask_id = num_tokens
self.token_emb = nn.Embedding(num_tokens + 1, dim) # last token is used as mask_id
self.pos_emb = nn.Embedding(max_seq_len, dim)
self.transformer = Transformer(
dim=dim,
attn_num_null_kv=2,
has_cross_attn=True,
**kwargs
)
self.to_logits = nn.Linear(dim, num_tokens)
self.loss_fn = nn.CrossEntropyLoss(label_smoothing=0.1)
def gamma(self, r):
return (r * torch.pi / 2).cos()
def add_noise(self, x, r):
r = self.gamma(r)[:, None]
mask = torch.bernoulli(r * torch.ones_like(x))
mask = mask.round().bool()
x = x * (~mask) + self.mask_id * mask
return x, mask
def forward(self, x, text_cond=None, **kwargs):
b, n = x.shape
x = self.token_emb(x)
x = self.pos_emb(torch.arange(n, device=x.device)) + x
x = self.transformer(x, text_cond, **kwargs)
return self.to_logits(x)
def loss(self, pred, video_indices, mask):
acc = (pred.permute(0, 2, 1).argmax(1) == video_indices).float().mean()
video_indices = video_indices[mask] # 839
# video_indices = video_indices.flatten()
mask = mask.flatten() # 1536
pred = pred.view(-1, pred.shape[-1])[mask] # 839x1024
# pred = pred.view(-1, pred.shape[-1]) # 839x1024
return self.loss_fn(pred, video_indices), acc
class MaskGitTrainWrapper(nn.Module):
def __init__(
self,
maskgit,
*,
steps
):
super().__init__()
self.maskgit = maskgit
self.mask_id = maskgit.mask_id
self.steps = steps
def forward(self, x, **kwargs):
batch, seq, device = *x.shape, x.device
self.maskgit.train()
rand_step = torch.randint(0, self.steps, (1,), device=device)
num_tokens_mask = (seq * torch.cos(rand_step * math.pi * 0.5 / self.steps)).round().long().clamp(
min=1) # cosine schedule was best
_, indices = torch.randn((batch, seq), device=device).topk(num_tokens_mask.item(), dim=-1)
mask = torch.zeros((batch, seq), device=device).scatter(1, indices, 1.).bool()
masked_input = torch.where(mask, self.mask_id, x)
logits = self.maskgit(masked_input, **kwargs)
loss = F.cross_entropy(logits[mask], x[mask])
return loss
class Phenaki(nn.Module):
def __init__(
self,
*,
maskgit: MaskGit,
steps=18, # 18 is the ideal steps with token critic
sample_temperature=0.,
text_embed_dim=None,
cond_drop_prob=0.25,
max_text_len=128
):
super().__init__()
self.maskgit = maskgit
self.mask_id = maskgit.mask_id
self.maskgit_trainer = MaskGitTrainWrapper(maskgit, steps=steps)
# sampling
self.steps = steps
self.sample_temperature = sample_temperature
assert cond_drop_prob > 0.
self.cond_drop_prob = cond_drop_prob # classifier free guidance for transformers - @crowsonkb
@torch.no_grad()
def sample( self, *, text, num_frames, cond_scale=3., starting_temperature=0.9, noise_K=1.):
device = next(self.parameters()).device
num_tokens = self.cvivit.num_tokens_per_frames(num_frames)
with torch.no_grad():
text_embeds = self.encode_texts([text], output_device=device)
text_mask = torch.any(text_embeds != 0, dim=-1)
shape = (1, num_tokens)
video_token_ids = torch.full(shape, self.mask_id, device=device)
mask = torch.ones(shape, device=device, dtype=torch.bool)
scores = None
for step in range(self.steps):
is_first_step = step == 0
is_last_step = step == (self.steps - 1)
steps_til_x0 = self.steps - (step + 1)
if not is_first_step and exists(scores):
time = torch.full((1,), step / self.steps, device=device)
num_tokens_mask = (num_tokens * torch.cos(time * math.pi * 0.5)).round().long().clamp(min=1)
_, indices = scores.topk(num_tokens_mask.item(), dim=-1)
mask = torch.zeros(shape, device=device).scatter(1, indices, 1).bool()
video_token_ids = torch.where(mask, self.mask_id, video_token_ids)
logits = self.maskgit.forward_with_cond_scale(
video_token_ids,
context=text_embeds,
mask=text_mask,
cond_scale=cond_scale
)
temperature = starting_temperature * (step / steps_til_x0)
pred_video_ids = gumbel_sample(logits, temperature=temperature)
video_token_ids = torch.where(mask, pred_video_ids, video_token_ids)
if not is_last_step:
scores = logits.gather(2, rearrange(pred_video_ids, '... -> ... 1'))
scores = 1 - rearrange(scores, '... 1 -> ...')
scores = torch.where(mask, scores, -1e4)
video = self.cvivit.decode_from_codebook_indices(video_token_ids)
return video
if __name__ == '__main__':
# m = MaskGit(dim=2048, num_tokens=1024, max_seq_len=1536, depth=32, dim_context=512, heads=32) # paper version
m = MaskGit(dim=1224, num_tokens=8192, max_seq_len=1536, depth=22, dim_context=512, heads=22) # 6 x 16 x 16
# print(sum([p.numel() for p in m.parameters()]))
for name, p in m.named_parameters():
print(name)
print(p.shape)
# x = torch.randint(low=0, high=8192, size=(6, 16, 16)).view(1, -1)
# text_cond = torch.randn(1, 10, 512)
# print(m(x, text_cond).shape)