-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvgg19.py
76 lines (56 loc) · 2.41 KB
/
vgg19.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import tensorflow as tf
import numpy as np
import scipy.io
# download URL : http://www.vlfeat.org/matconvnet/models/imagenet-vgg-verydeep-19.mat
MODEL_FILE_NAME = './imagenet-vgg-verydeep-19.mat'
def _conv_layer(input, weights, bias):
conv = tf.nn.conv2d(input, tf.constant(weights), strides=(1, 1, 1, 1),
padding='SAME')
return tf.nn.bias_add(conv, bias)
def _pool_layer(input):
return tf.nn.max_pool(input, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1),
padding='SAME')
def preprocess(image, mean_pixel):
return image - mean_pixel
def undo_preprocess(image, mean_pixel):
return image + mean_pixel
class VGG19:
layers = (
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1',
'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3',
'relu3_3', 'conv3_4', 'relu3_4', 'pool3',
'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3',
'relu4_3', 'conv4_4', 'relu4_4', 'pool4',
'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3',
'relu5_3', 'conv5_4', 'relu5_4'
)
def __init__(self, data_path):
data = scipy.io.loadmat(data_path)
self.mean_pixel = np.array([123.68, 116.779, 103.939])
self.weights = data['layers'][0]
def preprocess(self, image):
return image-self.mean_pixel
def undo_preprocess(self,image):
return image+self.mean_pixel
def feed_forward(self, input_image, scope=None):
net = {}
current = input_image
with tf.variable_scope(scope):
for i, name in enumerate(self.layers):
kind = name[:4]
if kind == 'conv':
kernels = self.weights[i][0][0][2][0][0]
bias = self.weights[i][0][0][2][0][1]
# matconvnet: weights are [width, height, in_channels, out_channels]
# tensorflow: weights are [height, width, in_channels, out_channels]
kernels = np.transpose(kernels, (1, 0, 2, 3))
bias = bias.reshape(-1)
current = _conv_layer(current, kernels, bias)
elif kind == 'relu':
current = tf.nn.relu(current)
elif kind == 'pool':
current = _pool_layer(current)
net[name] = current
assert len(net) == len(self.layers)
return net