-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
329 lines (262 loc) · 10.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import os
import time
import shutil
import math
import cv2
import torch
import numpy as np
from einops import rearrange
from torch.optim import SGD, Adam, AdamW
from tensorboardX import SummaryWriter
import torch.nn.functional as F
def warm_up_cosine_lr_scheduler(optimizer, epochs=100, warm_up_epochs=5, eta_min=1e-9):
"""
Description:
- Warm up cosin learning rate scheduler, first epoch lr is too small
Arguments:
- optimizer: input optimizer for the training
- epochs: int, total epochs for your training, default is 100. NOTE: you should pass correct epochs for your training
- warm_up_epochs: int, default is 5, which mean the lr will be warm up for 5 epochs. if warm_up_epochs=0, means no need
to warn up, will be as cosine lr scheduler
- eta_min: float, setup ConsinAnnealingLR eta_min while warm_up_epochs = 0
Returns:
- scheduler
"""
if warm_up_epochs <= 0:
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=epochs, eta_min=eta_min)
else:
warm_up_with_cosine_lr = lambda epoch: eta_min + (epoch / warm_up_epochs) \
if epoch <= warm_up_epochs else \
0.5 * (np.cos((epoch - warm_up_epochs) / (epochs - warm_up_epochs) * np.pi) + 1)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=warm_up_with_cosine_lr)
return scheduler
class Averager():
def __init__(self, class_names=['all']):
if 'all' not in class_names:
class_names.append('all')
self.values = {k: [] for k in class_names}
def add(self, ks, vs):
if torch.is_tensor(vs):
vs = vs.cpu().tolist()
for k, v in zip(ks, vs):
self.values[k].append(v)
self.values['all'].append(v)
def item(self):
return_dict = {}
for k, v in self.values.items():
if len(v):
return_dict[k] = sum(v) / len(v)
else:
return_dict[k] = 0
return return_dict
class AveragerList():
def __init__(self):
self.values = []
def add(self, vs):
if torch.is_tensor(vs):
vs = vs.cpu().tolist()
if isinstance(vs, list):
self.values += vs
else:
self.values += [vs]
def item(self):
return sum(self.values) / len(self.values)
class Timer():
def __init__(self):
self.v = time.time()
def s(self):
self.v = time.time()
def t(self):
return time.time() - self.v
def time_text(t):
if t >= 3600:
return '{:.1f}h'.format(t / 3600)
elif t >= 60:
return '{:.1f}m'.format(t / 60)
else:
return '{:.1f}s'.format(t)
_log_path = None
def set_log_path(path):
global _log_path
_log_path = path
def log(obj, filename='log.txt'):
print(obj)
if _log_path is not None:
with open(os.path.join(_log_path, filename), 'a') as f:
print(obj, file=f)
def ensure_path(path, remove=True):
basename = os.path.basename(path.rstrip('/'))
if os.path.exists(path):
print('{} exists!'.format(path))
# if remove and (basename.startswith('_')
# or input('{} exists, remove? (y/[n]): '.format(path)) == 'y'):
# shutil.rmtree(path)
# os.makedirs(path)
else:
os.makedirs(path)
def set_save_path(save_path, remove=True):
ensure_path(save_path, remove=remove)
set_log_path(save_path)
writer = SummaryWriter(os.path.join(save_path, 'tensorboard'))
return log, writer
def compute_num_params(model, text=False):
tot = int(sum([np.prod(p.shape) for p in model.parameters()]))
if text:
if tot >= 1e6:
return '{:.1f}M'.format(tot / 1e6)
else:
return '{:.1f}K'.format(tot / 1e3)
else:
return tot
def make_optimizer(param_list, optimizer_spec, load_sd=False):
Optimizer = {
'sgd': SGD,
'adam': Adam,
'adamw': AdamW,
}[optimizer_spec['name']]
default_args = {
'sgd': {},
'adam':
{
'betas': (0.9, 0.999),
'eps': 1e-08,
'weight_decay': 0,
'amsgrad': False
},
'adamw': {},
}[optimizer_spec['name']]
default_args.update(optimizer_spec['args'])
optimizer = Optimizer(param_list, **default_args)
if load_sd:
optimizer.load_state_dict(optimizer_spec['sd'])
return optimizer
def make_coord(shape, ranges=None, flatten=True):
""" Make coordinates at grid centers.
"""
coord_seqs = []
for i, n in enumerate(shape):
if ranges is None:
v0, v1 = -1, 1
else:
v0, v1 = ranges[i]
r = (v1 - v0) / (2 * n)
seq = v0 + r + (2 * r) * torch.arange(n).float()
coord_seqs.append(seq)
ret = torch.stack(torch.meshgrid(*coord_seqs), dim=-1)
if flatten:
ret = ret.view(-1, ret.shape[-1])
return ret
def to_coordinates(size=(56, 56), return_map=True):
"""Converts an image to a set of coordinates and features.
Args:
img (torch.Tensor): Shape (channels, height, width).
"""
# H, W
# Coordinates are indices of all non zero locations of a tensor of ones of
# same shape as spatial dimensions of image
coordinates = torch.ones(size).nonzero(as_tuple=False).float()
# Normalize coordinates to lie in [-.5, .5]
coordinates[..., 0] = coordinates[..., 0] / (size[0] - 1) - 0.5
coordinates[..., 1] = coordinates[..., 1] / (size[1] - 1) - 0.5
# Convert to range [-1, 1]
coordinates *= 2
if return_map:
coordinates = rearrange(coordinates, '(H W) C -> H W C', H=size[0])
# [y, x]
return coordinates
def to_pixel_samples(img):
""" Convert the image to coord-RGB pairs.
img: Tensor, (3, H, W)
"""
coord = make_coord(img.shape[-2:])
rgb = img.view(3, -1).permute(1, 0)
return coord, rgb
def get_clamped_psnr(img, img_recon, rgb_range=1, crop_border=None):
# Values may lie outside [0, 1], so clamp input
img_recon = torch.clamp(img_recon, 0., 1.)
# Pixel values lie in {0, ..., 255}, so round float tensor
img_recon = torch.round(img_recon * 255) / 255.
diff = img - img_recon
if crop_border is not None:
assert len(diff.size()) == 4
valid = diff[..., crop_border:-crop_border, crop_border:-crop_border]
else:
valid = diff
psnr_list = []
for i in range(len(img)):
psnr = 20. * np.log10(1.) - 10. * valid[i].detach().pow(2).mean().log10().to('cpu').item()
psnr_list.append(psnr)
return psnr_list
def _ssim_pth(img, img2):
"""Calculate SSIM (structural similarity) (PyTorch version).
It is called by func:`calculate_ssim_pt`.
Args:
img (Tensor): Images with range [0, 1], shape (n, 3/1, h, w).
img2 (Tensor): Images with range [0, 1], shape (n, 3/1, h, w).
Returns:
float: SSIM result.
"""
c1 = (0.01 * 255)**2
c2 = (0.03 * 255)**2
kernel = cv2.getGaussianKernel(11, 1.5)
window = np.outer(kernel, kernel.transpose())
window = torch.from_numpy(window).view(1, 1, 11, 11).expand(img.size(1), 1, 11, 11).to(img.dtype).to(img.device)
mu1 = F.conv2d(img, window, stride=1, padding=0, groups=img.shape[1]) # valid mode
mu2 = F.conv2d(img2, window, stride=1, padding=0, groups=img2.shape[1]) # valid mode
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = F.conv2d(img * img, window, stride=1, padding=0, groups=img.shape[1]) - mu1_sq
sigma2_sq = F.conv2d(img2 * img2, window, stride=1, padding=0, groups=img.shape[1]) - mu2_sq
sigma12 = F.conv2d(img * img2, window, stride=1, padding=0, groups=img.shape[1]) - mu1_mu2
cs_map = (2 * sigma12 + c2) / (sigma1_sq + sigma2_sq + c2)
ssim_map = ((2 * mu1_mu2 + c1) / (mu1_sq + mu2_sq + c1)) * cs_map
return ssim_map.mean([1, 2, 3])
def calculate_ssim_pt(img, img2, crop_border, test_y_channel=False, **kwargs):
"""Calculate SSIM (structural similarity) (PyTorch version).
``Paper: Image quality assessment: From error visibility to structural similarity``
The results are the same as that of the official released MATLAB code in
https://ece.uwaterloo.ca/~z70wang/research/ssim/.
For three-channel images, SSIM is calculated for each channel and then
averaged.
Args:
img (Tensor): Images with range [0, 1], shape (n, 3/1, h, w).
img2 (Tensor): Images with range [0, 1], shape (n, 3/1, h, w).
crop_border (int): Cropped pixels in each edge of an image. These pixels are not involved in the calculation.
test_y_channel (bool): Test on Y channel of YCbCr. Default: False.
Returns:
float: SSIM result.
"""
assert img.shape == img2.shape, f'Image shapes are different: {img.shape}, {img2.shape}.'
if crop_border != 0:
img = img[:, :, crop_border:-crop_border, crop_border:-crop_border]
img2 = img2[:, :, crop_border:-crop_border, crop_border:-crop_border]
if test_y_channel:
img = rgb2ycbcr_pt(img, y_only=True)
img2 = rgb2ycbcr_pt(img2, y_only=True)
img = img.to(torch.float64)
img2 = img2.to(torch.float64)
ssim = _ssim_pth(img * 255., img2 * 255.)
return ssim
def calculate_psnr_pt(img, img2, crop_border, test_y_channel=False, **kwargs):
"""Calculate PSNR (Peak Signal-to-Noise Ratio) (PyTorch version).
Reference: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
Args:
img (Tensor): Images with range [0, 1], shape (n, 3/1, h, w).
img2 (Tensor): Images with range [0, 1], shape (n, 3/1, h, w).
crop_border (int): Cropped pixels in each edge of an image. These pixels are not involved in the calculation.
test_y_channel (bool): Test on Y channel of YCbCr. Default: False.
Returns:
float: PSNR result.
"""
assert img.shape == img2.shape, (f'Image shapes are different: {img.shape}, {img2.shape}.')
if crop_border != 0:
img = img[:, :, crop_border:-crop_border, crop_border:-crop_border]
img2 = img2[:, :, crop_border:-crop_border, crop_border:-crop_border]
if test_y_channel:
img = rgb2ycbcr_pt(img, y_only=True)
img2 = rgb2ycbcr_pt(img2, y_only=True)
img = img.to(torch.float64)
img2 = img2.to(torch.float64)
mse = torch.mean((img - img2)**2, dim=[1, 2, 3])
return 10. * torch.log10(1. / (mse + 1e-8))