forked from Gab0/japonicus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevolution_bayes.py
158 lines (124 loc) · 4.41 KB
/
evolution_bayes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import datetime
import json
import os
import numpy as np
import pandas as pd
import copy
#from plotInfo import plotEvolutionSummary
from bayes_opt import BayesianOptimization
from multiprocessing import Pool
import multiprocessing as mp
from promoterz.statistics import write_evolution_logs
import promoterz
from Settings import getSettings
import promoterz.evaluation.gekko as gekkoWrapper
import chart
dict_merge = lambda a,b: a.update(b) or a
gsettings = getSettings()['Global']
settings = getSettings()['bayesian']
Strategy = settings["Strategy"]
StratConfig = getSettings()["strategies"][Strategy]
percentiles = np.array([0.25, 0.5, 0.75])
all_val = []
stats = []
candleSize = 0
historySize = 0
watch = settings["watch"]
watch, DatasetRange = gekkoWrapper.getAvailableDataset(watch)
def expandGekkoStrategyParameters(IND, Strategy):
config = {}
IND = promoterz.utils.expandNestedParameters(IND)
config[Strategy] = IND
return config
def Evaluate(Strategy, parameters):
DateRange = gekkoWrapper.getRandomDateRange(DatasetRange, deltaDays=settings['deltaDays'])
params = expandGekkoStrategyParameters(parameters, Strategy)
BacktestResult = gekkoWrapper.Evaluate(30, watch,
[DateRange], params, "http://localhost:3000")
BalancedProfit = BacktestResult[0][0]
return BalancedProfit
def gekko_search(**parameters):
parallel = settings['parallel']
num_rounds = settings['num_rounds']
# remake CS & HS variability;
candleSize= settings['candleSize']
historySize= settings['historySize']
if parallel:
p = Pool(mp.cpu_count())
param_list = list([(Strategy, parameters),] * num_rounds)
scores = p.starmap(Evaluate, param_list)
p.close()
p.join()
else:
scores = [Evaluate(Strategy, parameters) for n in range(num_rounds)]
series = pd.Series(scores)
mean = series.mean()
stats.append([series.count(), mean, series.std(), series.min()] +
[series.quantile(x) for x in percentiles] + [series.max()])
all_val.append(mean)
write_evolution_logs(len(all_val), stats[-1])
return mean
def flatten_dict(d):
def items():
for key, value in d.items():
if isinstance(value, dict):
for subkey, subvalue in flatten_dict(value).items():
yield key + "." + subkey, subvalue
else:
yield key, value
return dict(items())
def gekko_bayesian(indicator=None):
print("")
global Strategy
Strategy = indicator
if indicator == None:
Strategy = settings['Strategy']
print("Starting search %s parameters" % Strategy)
bo = BayesianOptimization(gekko_search, copy.deepcopy(StratConfig))
# 1st Evaluate
print("")
print("Step 1: BayesianOptimization parameter search")
bo.maximize(init_points=settings['init_points'], n_iter=settings['num_iter'])
max_val = bo.res['max']['max_val']
index = all_val.index(max_val)
s1 = stats[index]
# 2nd Evaluate
print("")
print("Step 2: testing searched parameters on random date")
max_params = bo.res['max']['max_params'].copy()
#max_params["persistence"] = 1
print("Starting Second Evaluation")
gekko_search(**max_params)
s2 = stats[-1]
# 3rd Evaluate
print("")
print("Step 3: testing searched parameters on new date")
watch = settings["watch"]
print(max_params)
result = Evaluate(Strategy, max_params)
resultjson = expandGekkoStrategyParameters(max_params, Strategy)#[Strategy]
s3= result
# config.js like output
percentiles = np.array([0.25, 0.5, 0.75])
formatted_percentiles = [str(int(round(x*100)))+"%" for x in percentiles]
stats_index = (['count', 'mean', 'std', 'min'] +
formatted_percentiles + ['max'])
print("")
print("// "+'-'*50)
print("// "+ Strategy + ' Settings')
print("// "+'-'*50)
print("// 1st Evaluate: %.3f" % s1[1])
for i in range(len(s1)):
print('// %s: %.3f' % (stats_index[i], s1[i]))
print("// "+'-'*50)
print("// 2nd Evaluate: %.3f" % s2[1])
for i in range(len(s2)):
print('// %s: %.3f' % (stats_index[i], s2[i]))
print("// "+'-'*50)
print("// 3rd Evaluted: %f" % s3)
print("// "+'-'*50)
print("config.%s = {%s};" % (Strategy, json.dumps(resultjson, indent=2)[1:-1]))
print("// "+'-'*50)
return max_params