forked from bellemae/dea_bits
-
Notifications
You must be signed in to change notification settings - Fork 0
/
TestWOfSbits.py
213 lines (157 loc) · 6.77 KB
/
TestWOfSbits.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# For the given area
# load the new CU data in native projection
# classify using WOfS classifier
# mask using fmask / dsm
# load current WOfS data - in same projection as CU
# compare two classifications
# save out comparison file with bands:
# 'new_water'
# 'curr_water'
# 'missing'
# 'extra'
# 'match'
import datacube
import sys
sys.path.insert(0,'/g/data/u46/users/bt2744/work/code/wofs-prods/wofs/') # to import wofs (and preferentially from here)
import wofs.wofs_app
import numpy as np
import scipy
import xarray
from datacube.storage import masking
from functools import reduce
import xarray as xr
from datacube.drivers.netcdf import write_dataset_to_netcdf
MASKED_HIGH_SLOPE = 1 << 4 # (dec 16) bit 4: 1=pixel masked out due to high slope
MASKED_TERRAIN_SHADOW = 1 << 3 # (dec 8) bit 3: 1=pixel masked out due to terrain shadow or
MASKED_NO_CONTIGUITY = 1 << 1 # (dec 2) bit 1: 1=pixel masked out due to lack of data contiguity
NO_DATA = 1 << 0 # (dec 1) bit 0: 1=pixel masked out due to NO_DATA in NBAR source, 0=valid data in NBAR
MASKED_CLOUD = 1 << 6 # (dec 64) bit 6: 1=pixel masked out due to cloud
MASKED_CLOUD_SHADOW = 1 << 5 # (dec 32) bit 5: 1=pixel masked out due to cloud shadow
# Water detected on slopes equal or greater than this value are masked out
SLOPE_THRESHOLD_DEGREES = 12.0
# If the sun only grazes a hillface, observation unreliable (vegetation shadows etc)
LOW_SOLAR_INCIDENCE_THRESHOLD_DEGREES = 30
#--------------These are from wofs and should be referenced there rather than copied------
def eo_filter(source):
"""
Find where there is no data
Input must be dataset, not array (since bands could have different nodata values).
"""
nodata_bools = source.apply(lambda array: array == array.nodata).to_array(dim='band')
nothingness = nodata_bools.all(dim='band')
noncontiguous = nodata_bools.any(dim='band')
return np.uint8(NO_DATA) * nothingness | np.uint8(MASKED_NO_CONTIGUITY) * noncontiguous
def dilate(array):
"""Dilation e.g. for cloud and cloud/terrain shadow"""
# kernel = [[1] * 7] * 7 # blocky 3-pixel dilation
y, x = np.ogrid[-3:4, -3:4]
kernel = ((x * x) + (y * y) <= 3.5**2) # disk-like 3-pixel radial dilation
return scipy.ndimage.binary_dilation(array, structure=kernel)
def terrain_filter(dsm, nbar):
"""
Terrain shadow masking, slope masking, solar incidence angle masking.
Input: xarray DataSets
"""
shadows, slope, sia = wofs.terrain.shadows_and_slope(dsm, nbar.nbart_blue.time.values)
shadowy = dilate(shadows != wofs.terrain.LIT) | (sia < LOW_SOLAR_INCIDENCE_THRESHOLD_DEGREES)
steep = (slope > SLOPE_THRESHOLD_DEGREES)
result = np.uint8(MASKED_TERRAIN_SHADOW) * shadowy | np.uint8(MASKED_HIGH_SLOPE) * steep
return xarray.DataArray(result, coords=[dsm.y, dsm.x]) # note, assumes (y,x) axis ordering
#-------------------------------------------------------------------------------------------
def pq_filter(fmask):
masking = np.zeros(fmask.shape, dtype=np.uint8)
masking[fmask == 0] += NO_DATA
masking[fmask == 2] += MASKED_CLOUD
masking[fmask == 3] += MASKED_CLOUD_SHADOW
return masking
def load_dataset(dc_up, ds, query):
# Bands/measurements to load
wofs_measurements = ['nbart_red', 'nbart_blue', 'nbart_green', 'nbart_nir',
'nbart_swir_1', 'nbart_swir_2', 'fmask', 'terrain_shadow',
'nbart_contiguity']
ds = dc_up.load(product=ds.type.name,
measurements=wofs_measurements,
datasets = [ds],
**query
)
return ds.squeeze()
def classify(ds):
bands = ['nbart_blue', 'nbart_green', 'nbart_red', 'nbart_nir', 'nbart_swir_1', 'nbart_swir_2']
return wofs.classifier.classify(ds[bands].to_array(dim='band'))
def load_dsm(ds, q):
# Terrain - shadow / high slope
dc_prod = datacube.Datacube()
terrain_padding = 6850
x1 = ds.x.data[0] - terrain_padding
x2 = ds.x.data[-1] + terrain_padding
y1 = ds.y.data[0] - terrain_padding
y2 = ds.y.data[-1] + terrain_padding
dsm = dc_prod.load(product='dsm1sv10',
crs=q['output_crs'],
output_crs=q['output_crs'],
resolution=q['resolution'],
align=q['align'],
resampling='average',
x=(x1, x2),
y=(y1, y2)
)
return dsm.squeeze()
def load_wofl(ds, query):
datetime = str(ds.time.data)[:19]
dc_prod = datacube.Datacube()
print(f"date: {datetime}")
print(f"Query: {query}")
wofl = dc_prod.load( product='wofs_albers', time=datetime, **query )
return wofl.squeeze()
def save(newWOFL, currWOFL, name, both=True):
newWOFL.attrs['nodata'] = 1
if both:
currWOFL['CU_water'] = newWOFL
else:
currWOFL = currWOFL[[]]
currWOFL['water'] = newWOFL
write_dataset_to_netcdf(currWOFL, f'/g/data/u46/users/bt2744/work/Projects/collection_upgrade/{name}')
if __name__ == '__main__':
dc_up = datacube.Datacube(env="ard_interop")
# dc_up = datacube.Datacube(env="josh_test")
res = 30
time = ('2017-01-01', '2017-02-20')
# point
# lat, lon = -19.25, 146.75 #Townsville
# lat, lon = -12.25, 132.37 #Kakadu
lat, lon = -28.53, 153.538
# area
buff = 0.1
lon_dim = (lon - buff, lon + buff)
lat_dim = (lat - buff, lat + buff)
# Find all the datasets for my area/time of interest
datasets = dc_up.find_datasets(product='ls8_ard',
time=time,
lat=lat_dim,
lon=lon_dim,
gqa_iterative_mean_xy=[0, 1])
# for each dataset, load data, classify, filter, compare, save
# eventually - for ds in datasets:
#---
for dataset in datasets:
print(f"------------------Processing {dataset}")
query = {
'resolution': (res, res),
'align': (res / 2.0, res / 2.0),
'output_crs': dataset.crs.crs_str,
'lat': lat_dim,
'lon': lon_dim,
}
# load the data
data = load_dataset(dc_up, dataset, query)
dsm = load_dsm(data, query)
currWOFL = load_wofl(data, query)
#ensure we have a current WOFL before continuing
if currWOFL:
print("Found matching wofl")
# classify and filter
newWOFL = classify(data) | eo_filter(data) | pq_filter(data.fmask) | terrain_filter(dsm, data)
file_name = f"water_bits_{lat}_{lon}_{str(data.time.data)[:19]}.nc"
save(newWOFL, currWOFL, file_name)
else:
print(f"No wofl to match date: {str(data.time.data)}")