19
19
import skimage .measure
20
20
21
21
data_path = 'raw/'
22
- save_path = '/mnt/data1/yihuihe/mnc /'
22
+ save_path = '/mnt/data1/yihuihe/mnc_small /'
23
23
image_rows = 420
24
24
image_cols = 580
25
25
@@ -72,26 +72,41 @@ def preprocess(imgs, img_rows,img_cols):
72
72
return imgs_p
73
73
74
74
def detseg ():
75
- out_rows = 384
76
- out_cols = 512
75
+ # out_rows=240
76
+ # out_cols=320
77
+ out_rows = 160
78
+ out_cols = 224
77
79
imgs_train = np .load ('imgs_train.npy' )
78
- imgs_train -= imgs_train .mean (0 )[np .newaxis ,]
79
- imgs_train /= imgs_train .std ()
80
- imgs_train = preprocess (imgs_train , out_rows ,out_cols )
80
+ imgs_train = preprocess (imgs_train , out_rows ,out_cols ).astype (np .float32 )
81
+ mean_image = imgs_train .mean (0 )[np .newaxis ,]
82
+ imgs_train -= mean_image
83
+ print (np .histogram (imgs_train ))
84
+ std_image = imgs_train .std (0 )[np .newaxis ,]
85
+ imgs_train /= std_image
86
+ print (np .histogram (imgs_train ))
87
+
81
88
imgs_mask_train = np .load ('imgs_mask_train.npy' )
82
- imgs_mask_train [imgs_mask_train <= 50 ]= 0
83
- imgs_mask_train [imgs_mask_train > 50 ]= 1
84
89
imgs_mask_train = preprocess (imgs_mask_train , out_rows ,out_cols )
85
-
90
+ imgs_mask_train [imgs_mask_train <= 50 ]= False
91
+ imgs_mask_train [imgs_mask_train > 50 ]= True
92
+ print (np .histogram (imgs_mask_train ))
93
+
86
94
# if os.path.exists(save_path+'data.npy')==False:
87
- np .save (save_path + 'data.npy' ,imgs_train .astype (np .uint8 ))
95
+ np .save (save_path + 'mean.npy' ,mean_image )
96
+ np .save (save_path + 'std.npy' ,std_image )
97
+ np .save (save_path + 'data.npy' ,imgs_train .astype (np .float32 ))
88
98
print ('save data' )
89
- np .save (save_path + 'mask.npy' ,imgs_mask_train .astype (np .uint8 ))
99
+ np .save (save_path + 'mask.npy' ,imgs_mask_train .astype (np .bool ))
90
100
print ('save mask' )
91
101
del imgs_train
92
102
93
103
bboxes = []
94
104
masks = []
105
+
106
+ acc_width = []
107
+ acc_height = []
108
+ max_width = 0
109
+
95
110
for percent ,label in enumerate (imgs_mask_train ):
96
111
if percent % 100 == 0 :
97
112
print (percent )
@@ -112,12 +127,22 @@ def detseg():
112
127
ymax = idx_map [0 ].max ()
113
128
xmin = idx_map [1 ].min ()
114
129
xmax = idx_map [1 ].max ()
130
+
131
+ max_width = foregroundIdx .shape [1 ]
132
+ acc_width .append (xmax - xmin )
133
+ acc_height .append (ymax - ymin )
115
134
# print(xmin,ymin,xmax,ymax)
116
135
instance_masks .append (label [ymin :ymax ,xmin :xmax ])
117
136
gt_boxes .append ([xmin ,ymin ,xmax ,ymax ,1 ])
118
137
bboxes .append (gt_boxes )
119
138
masks .append (instance_masks )
120
139
140
+ print ("xmax" , max_width , max (acc_width ))
141
+ H , xedges , yedges = np .histogram2d (acc_width ,acc_height , bins = 50 )
142
+ plt .imshow (H , interpolation = 'nearest' , origin = 'low' ,
143
+ extent = [xedges [0 ], xedges [- 1 ], yedges [0 ], yedges [- 1 ]])
144
+ plt .show ()
145
+
121
146
np .save (save_path + 'roidb.npy' ,np .array (bboxes ))
122
147
np .save (save_path + 'maskdb.npy' ,np .array (masks ))
123
148
0 commit comments