-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDataStream_API_word_count.py
141 lines (122 loc) · 5.81 KB
/
DataStream_API_word_count.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Test with a Flink Python DataStream API Program
# The following code comes from the official [documents version 1.18](https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/python/datastream_tutorial/).
# Save the code below as `DataStream_API_word_count.py`.
import os
# Get current absolute path
current_file_path = os.path.abspath(__file__)
# Get current dir path
current_dir_path = os.path.dirname(current_file_path)
# Change into current dir path
os.chdir(current_dir_path)
import argparse
import logging
import sys
import numpy as np
import pandas as pd
from pyflink.table import StreamTableEnvironment
from pyflink.common import WatermarkStrategy, Encoder, Types
from pyflink.datastream import StreamExecutionEnvironment, RuntimeExecutionMode
from pyflink.datastream.connectors.file_system import FileSource, StreamFormat, FileSink, OutputFileConfig, RollingPolicy
word_count_data = ["To be, or not to be,--that is the question:--",
"Whether 'tis nobler in the mind to suffer",
"The slings and arrows of outrageous fortune",
"Or to take arms against a sea of troubles,",
"And by opposing end them?--To die,--to sleep,--",
"No more; and by a sleep to say we end",
"The heartache, and the thousand natural shocks",
"That flesh is heir to,--'tis a consummation",
"Devoutly to be wish'd. To die,--to sleep;--",
"To sleep! perchance to dream:--ay, there's the rub;",
"For in that sleep of death what dreams may come,",
"When we have shuffled off this mortal coil,",
"Must give us pause: there's the respect",
"That makes calamity of so long life;",
"For who would bear the whips and scorns of time,",
"The oppressor's wrong, the proud man's contumely,",
"The pangs of despis'd love, the law's delay,",
"The insolence of office, and the spurns",
"That patient merit of the unworthy takes,",
"When he himself might his quietus make",
"With a bare bodkin? who would these fardels bear,",
"To grunt and sweat under a weary life,",
"But that the dread of something after death,--",
"The undiscover'd country, from whose bourn",
"No traveller returns,--puzzles the will,",
"And makes us rather bear those ills we have",
"Than fly to others that we know not of?",
"Thus conscience does make cowards of us all;",
"And thus the native hue of resolution",
"Is sicklied o'er with the pale cast of thought;",
"And enterprises of great pith and moment,",
"With this regard, their currents turn awry,",
"And lose the name of action.--Soft you now!",
"The fair Ophelia!--Nymph, in thy orisons",
"Be all my sins remember'd."]
def word_count(input_path, output_path):
env = StreamExecutionEnvironment.get_execution_environment()
env.set_runtime_mode(RuntimeExecutionMode.BATCH)
# write all the data to one file
env.set_parallelism(1)
# define the source
if input_path is not None:
ds = env.from_source(
source=FileSource.for_record_stream_format(StreamFormat.text_line_format(),
input_path)
.process_static_file_set().build(),
watermark_strategy=WatermarkStrategy.for_monotonous_timestamps(),
source_name="file_source"
)
else:
print("Executing word_count example with default input data set.")
print("Use --input to specify file input.")
ds = env.from_collection(word_count_data)
def split(line):
yield from line.split()
# compute word count
ds = ds.flat_map(split) \
.map(lambda i: (i, 1), output_type=Types.TUPLE([Types.STRING(), Types.INT()])) \
.key_by(lambda i: i[0]) \
.reduce(lambda i, j: (i[0], i[1] + j[1]))
# define the sink
if output_path is not None:
ds.sink_to(
sink=FileSink.for_row_format(
base_path=output_path,
encoder=Encoder.simple_string_encoder())
.with_output_file_config(
OutputFileConfig.builder()
.with_part_prefix("prefix")
.with_part_suffix(".ext")
.build())
.with_rolling_policy(RollingPolicy.default_rolling_policy())
.build()
)
else:
print("Printing result to stdout. Use --output to specify output path.")
# ds.print()
# Step 1: Create a `StreamTableEnvironment` object.
t_env = StreamTableEnvironment.create(env)
# Step 2: Convert the `DataStream` object to a `Table` object.
table = t_env.from_data_stream(ds)
# Step 3: Convert the `Table` object to a `pandas` dataframe.
df = table.to_pandas()
df.to_csv('./DataStream_API_word_count.csv', index=False)
print(df)
# submit for execution
env.execute()
if __name__ == '__main__':
logging.basicConfig(stream=sys.stdout, level=logging.INFO, format="%(message)s")
parser = argparse.ArgumentParser()
parser.add_argument(
'--input',
dest='input',
required=False,
help='Input file to process.')
parser.add_argument(
'--output',
dest='output',
required=False,
help='Output file to write results to.')
argv = sys.argv[1:]
known_args, _ = parser.parse_known_args(argv)
word_count(known_args.input, known_args.output)