forked from sailist/AdAlgo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtsp.html
75 lines (71 loc) · 52.6 KB
/
tsp.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>货郎旅游问题(TravelingSalesmanProblem,TSP)</title>
<style>
</style>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" integrity="sha384-yFRtMMDnQtDRO8rLpMIKrtPCD5jdktao2TV19YiZYWMDkUR5GQZR/NOVTdquEx1j" crossorigin="anonymous">
<link href="https://cdn.jsdelivr.net/npm/katex-copytex@latest/dist/katex-copytex.min.css" rel="stylesheet" type="text/css">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/Microsoft/vscode/extensions/markdown-language-features/media/markdown.css">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/Microsoft/vscode/extensions/markdown-language-features/media/highlight.css">
<style>
body {
font-family: -apple-system, BlinkMacSystemFont, 'Segoe WPC', 'Segoe UI', system-ui, 'Ubuntu', 'Droid Sans', sans-serif;
font-size: 14px;
line-height: 1.6;
}
</style>
<style>
.task-list-item { list-style-type: none; } .task-list-item-checkbox { margin-left: -20px; vertical-align: middle; }
</style>
<script src="https://cdn.jsdelivr.net/npm/katex-copytex@latest/dist/katex-copytex.min.js"></script>
</head>
<body class="vscode-body vscode-light">
<h1 id="货郎旅游问题travelingsalesmanproblemtsp">货郎旅游问题(TravelingSalesmanProblem,TSP)</h1>
<p>旅行商问题又叫货郎(优化)问题,是一个经典的组合优化问题。</p>
<p>TSP 可以描述为:一个商品推销员要去若干个城市推销商品,该推销员从一个城市出发,需要经过所有城市后,回到出发地。应如何选择行进路线,以<strong>使总的行程最短</strong>。</p>
<p>从图论的角度来看,该问题实质是在一个带权完全无向图中,找一个权值最小的<a href="../GraphTheory/2.html">哈密顿回路</a>。</p>
<p>该问题是一个 <a href="../turing/4.html">NP困难问题</a>,可以通过由<a href="#%E8%B4%A7%E9%83%8E%E5%88%A4%E5%AE%9A%E9%97%AE%E9%A2%98">货郎判定问题</a> <a href="../turing/5.html">图灵归约</a> 证明。</p>
<h2 id="np-hard-证明">NP-hard 证明</h2>
<p>设存在 TSP 优化问题求解算法 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">A</span></span></span></span>, 设计 TSP 判定问题的算法如下:</p>
<p>对于给定 TSP 判定问题的实例 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>G</mi><mo separator="true">,</mo><mi>d</mi><mo separator="true">,</mo><mi>K</mi></mrow><annotation encoding="application/x-tex">G,d,K</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">G</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">d</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">K</span></span></span></span>,调用 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo stretchy="false">(</mo><mi>G</mi><mo separator="true">,</mo><mi>d</mi><mo stretchy="false">)</mo><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">A(G, d),</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">A</span><span class="mopen">(</span><span class="mord mathdefault">G</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">d</span><span class="mclose">)</span><span class="mpunct">,</span></span></span></span> 求得城市排列:
<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mi>C</mi><msub><mi>π</mi><mn>1</mn></msub><mo lspace="0em" rspace="0em">∗</mo></msubsup><msubsup><mi>C</mi><msub><mi>π</mi><mn>2</mn></msub><mo lspace="0em" rspace="0em">∗</mo></msubsup><mo>…</mo><msubsup><mi>C</mi><msub><mi>π</mi><mi>m</mi></msub><mo lspace="0em" rspace="0em">∗</mo></msubsup></mrow><annotation encoding="application/x-tex">C_{\pi_{1}}^{*} C_{\pi_{2}}^{*} \ldots C_{\pi_{m}}^{*}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.035796em;vertical-align:-0.34709999999999996em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.688696em;"><span style="top:-2.453em;margin-left:-0.07153em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31731428571428577em;"><span style="top:-2.357em;margin-left:-0.03588em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∗</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.34709999999999996em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.688696em;"><span style="top:-2.453em;margin-left:-0.07153em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31731428571428577em;"><span style="top:-2.357em;margin-left:-0.03588em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∗</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.34709999999999996em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.688696em;"><span style="top:-2.453em;margin-left:-0.07153em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.16454285714285719em;"><span style="top:-2.357em;margin-left:-0.03588em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">m</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∗</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.34709999999999996em;"><span></span></span></span></span></span></span></span></span></span></p>
<p>若路径长度小于等于 K,即 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>m</mi></msubsup><mi>d</mi><mrow><mo fence="true">(</mo><msubsup><mi>C</mi><mrow><mi>π</mi><mo separator="true">,</mo></mrow><mo lspace="0em" rspace="0em">∗</mo></msubsup><mo separator="true">,</mo><msubsup><mi>c</mi><msub><mi>π</mi><mrow><mi>μ</mi><mo>+</mo></mrow></msub><mo lspace="0em" rspace="0em">∗</mo></msubsup><mo fence="true">)</mo></mrow><mo>≤</mo><mi>K</mi><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">\sum_{i=1}^{m} d\left(C_{\pi,}^{*}, c_{\pi_{\mu+}}^{*}\right) \leq K,</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.80002em;vertical-align:-0.65002em;"></span><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:-0.0000050000000000050004em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.804292em;"><span style="top:-2.40029em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">m</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.29971000000000003em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">d</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size2">(</span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.688696em;"><span style="top:-2.4530000000000003em;margin-left:-0.07153em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span><span class="mpunct mtight">,</span></span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∗</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.383108em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.688696em;"><span style="top:-2.4530000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2736642857142857em;"><span style="top:-2.357em;margin-left:-0.03588em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">μ</span><span class="mord mtight">+</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2818857142857143em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∗</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.44432em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size2">)</span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">K</span><span class="mpunct">,</span></span></span></span> 则回答 Yes,否则回答 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">N</mi><mi mathvariant="normal">o</mi></mrow><annotation encoding="application/x-tex">\mathrm{No}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord"><span class="mord mathrm">N</span><span class="mord mathrm">o</span></span></span></span></span> 。</p>
<p>若算法 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">A</span></span></span></span> 的时间复杂性是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>O</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">O(1)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.02778em;">O</span><span class="mopen">(</span><span class="mord">1</span><span class="mclose">)</span></span></span></span>,则上述算法能够在多项式时间解答。 所以TSP优化问题是NP-hard问题。</p>
<h1 id="货郎延伸问题">货郎延伸问题</h1>
<p>已知一部分货郎旅游路径,求完整的货郎旅游路径,使得总行程小于 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">K</span></span></span></span>,其形式化表述为:</p>
<hr>
<p><strong>实例:</strong> 城市集合 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>C</mi><mo>=</mo><mrow><mo fence="true">{</mo><msub><mi>c</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>c</mi><mn>2</mn></msub><mo separator="true">,</mo><mo>⋯</mo><mtext> </mtext><mo separator="true">,</mo><msub><mi>c</mi><mi>m</mi></msub><mo fence="true">}</mo></mrow><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">C=\left\{c_{1}, c_{2}, \cdots, c_{m}\right\},</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">{</span><span class="mord"><span class="mord mathdefault">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">m</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;">}</span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span></span></span></span> 任意两城市间距离 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mrow><mo fence="true">(</mo><msub><mi>c</mi><mi>i</mi></msub><mo separator="true">,</mo><msub><mi>c</mi><mi>j</mi></msub><mo fence="true">)</mo></mrow><mo>∈</mo><msup><mi>Z</mi><mo lspace="0em" rspace="0em">+</mo></msup><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">d\left(c_{i}, c_{j}\right) \in Z^{+},</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.036108em;vertical-align:-0.286108em;"></span><span class="mord mathdefault">d</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord"><span class="mord mathdefault">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.9657709999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">Z</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.771331em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">+</span></span></span></span></span></span></span></span></span><span class="mpunct">,</span></span></span></span> 界值 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi><mo>∈</mo><msup><mi>Z</mi><mo lspace="0em" rspace="0em">+</mo></msup><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">B \in Z^{+},</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.72243em;vertical-align:-0.0391em;"></span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.9657709999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">Z</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.771331em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">+</span></span></span></span></span></span></span></span></span><span class="mpunct">,</span></span></span></span> 以
及 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">C</span></span></span></span> 中 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.03148em;">k</span></span></span></span> 个城市的部分旅游</p>
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">Θ</mi><mo>=</mo><mrow><mo fence="true">⟨</mo><msub><mi>c</mi><mrow><mi>π</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></msub><mo separator="true">,</mo><msub><mi>c</mi><mrow><mi>π</mi><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow></msub><mo separator="true">,</mo><mo>⋯</mo><mtext> </mtext><mo separator="true">,</mo><msub><mi>c</mi><mrow><mi>π</mi><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo></mrow></msub><mo fence="true">⟩</mo></mrow><mo separator="true">,</mo><mn>1</mn><mo>⩽</mo><mi>k</mi><mo>⩽</mo><msub><mi>m</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex">\Theta=\left\langle c_{\pi(1)}, c_{\pi(2)}, \cdots, c_{\pi(k)}\right\rangle, 1 \leqslant k \leqslant m_{0}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord">Θ</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.2051999999999998em;vertical-align:-0.3551999999999999em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size1">⟨</span></span><span class="mord"><span class="mord mathdefault">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.34480000000000005em;"><span style="top:-2.5198em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span><span class="mopen mtight">(</span><span class="mord mtight">1</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3551999999999999em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.34480000000000005em;"><span style="top:-2.5198em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span><span class="mopen mtight">(</span><span class="mord mtight">2</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3551999999999999em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.34480000000000005em;"><span style="top:-2.5198em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span><span class="mopen mtight">(</span><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3551999999999999em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size1">⟩</span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel amsrm">⩽</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.83111em;vertical-align:-0.13667em;"></span><span class="mord mathdefault" style="margin-right:0.03148em;">k</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel amsrm">⩽</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></p>
<p><strong>询问:</strong> 能否将 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">Θ</mi></mrow><annotation encoding="application/x-tex">\Theta</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord">Θ</span></span></span></span> 延伸为一个全长不超过 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span></span></span></span> 的全程旅游回路 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo fence="true">⟨</mo><msub><mi>c</mi><mrow><mi>π</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></msub><mo separator="true">,</mo><msub><mi>c</mi><mrow><mi>π</mi><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow></msub><mo separator="true">,</mo><mo>⋯</mo><mtext> </mtext><mo separator="true">,</mo><msub><mi>c</mi><mrow><mi>π</mi><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo></mrow></msub></mrow><annotation encoding="application/x-tex">\left\langle c_{\pi(1)}, c_{\pi(2)}, \cdots, c_{\pi(k)}\right.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.2051999999999998em;vertical-align:-0.3551999999999999em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size1">⟨</span></span><span class="mord"><span class="mord mathdefault">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.34480000000000005em;"><span style="top:-2.5198em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span><span class="mopen mtight">(</span><span class="mord mtight">1</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3551999999999999em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.34480000000000005em;"><span style="top:-2.5198em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span><span class="mopen mtight">(</span><span class="mord mtight">2</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3551999999999999em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.34480000000000005em;"><span style="top:-2.5198em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span><span class="mopen mtight">(</span><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3551999999999999em;"><span></span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span> <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>c</mi><mrow><mi>π</mi><mo stretchy="false">(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></msub><mo separator="true">,</mo><mo>⋯</mo><mtext> </mtext><mo separator="true">,</mo><msub><mi>c</mi><mrow><mi>π</mi><mo stretchy="false">(</mo><mi>m</mi><mo stretchy="false">)</mo></mrow></msub><mo separator="true">,</mo><msub><mi>c</mi><mrow><mi>π</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></msub><mo fence="true">⟩</mo></mrow><annotation encoding="application/x-tex">\left.c_{\pi(k+1)}, \cdots, c_{\pi(m)}, c_{\pi(1)}\right\rangle</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.2051999999999998em;vertical-align:-0.3551999999999999em;"></span><span class="minner"><span class="mopen nulldelimiter"></span><span class="mord"><span class="mord mathdefault">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.34480000000000005em;"><span style="top:-2.5198em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span><span class="mopen mtight">(</span><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span><span class="mbin mtight">+</span><span class="mord mtight">1</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3551999999999999em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.34480000000000005em;"><span style="top:-2.5198em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span><span class="mopen mtight">(</span><span class="mord mathdefault mtight">m</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3551999999999999em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.34480000000000005em;"><span style="top:-2.5198em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span><span class="mopen mtight">(</span><span class="mord mtight">1</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3551999999999999em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size1">⟩</span></span></span></span></span></span> ?</p>
<p>现在证明<strong>货郎优化问题</strong>可以图灵归约到该问题,以及<strong>货郎判定问题</strong>可以图灵归约到该问题。</p>
<h2 id="np-hard-证明货郎优化问题图灵归约">NP-hard 证明(货郎优化问题图灵归约)</h2>
<p>设存在一个货郎延伸问题求解算法 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi><mo stretchy="false">(</mo><mi>C</mi><mo separator="true">,</mo><mi>d</mi><mo separator="true">,</mo><mi mathvariant="normal">Θ</mi><mo separator="true">,</mo><mi>B</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">S(C, d, \Theta, B)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">S</span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">d</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">Θ</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span></span>,注意到该问题是一个判定算法(输出 YES/NO)。而优化问题是寻找回路的最短路径长度。</p>
<p>因此该问题的解决方法为确认回路路径的区间,随后通过二分法依次判断区间内的数值即可。</p>
<p>城市间每条边的长度最短为 1,最大长度可以通过遍历取得,表示为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>d</mi><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow><annotation encoding="application/x-tex">d_{max}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.84444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">d</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">m</span><span class="mord mathdefault mtight">a</span><span class="mord mathdefault mtight">x</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>,设城市个数为 m,因为货郎问题是一个回路,回路有 m 个点就有 m 条边,因此其上下限即为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">[</mo><mi>m</mi><mo separator="true">,</mo><mi>m</mi><mo>∗</mo><msub><mi>d</mi><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[m, m*d_{max}]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mord mathdefault">m</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">m</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault">d</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">m</span><span class="mord mathdefault mtight">a</span><span class="mord mathdefault mtight">x</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">]</span></span></span></span>。</p>
<p>最后是二分法每次在该区间内取一个长度调用货郎延伸问题算法 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi><mo stretchy="false">(</mo><mi>C</mi><mo separator="true">,</mo><mi>d</mi><mo separator="true">,</mo><mi mathvariant="normal">Θ</mi><mo separator="true">,</mo><mi>B</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">S(C, d, \Theta, B)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">S</span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">d</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">Θ</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span></span> 判定,直至最终求解完成的过程,不再叙述。</p>
<blockquote>
<p>二分法的复杂度是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>O</mi><mo stretchy="false">(</mo><mi>l</mi><mi>o</mi><mi>g</mi><mi>B</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">O(logB)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.02778em;">O</span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.01968em;">l</span><span class="mord mathdefault">o</span><span class="mord mathdefault" style="margin-right:0.03588em;">g</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span></span>,在多项式时间内。</p>
</blockquote>
<h2 id="np-hard-证明货郎判定问题图灵归约">NP-hard 证明(货郎判定问题图灵归约)</h2>
<p>货郎判定问题实际上可以看做是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∣</mi><mi mathvariant="normal">Θ</mi><mi mathvariant="normal">∣</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">|\Theta|=1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">∣</span><span class="mord">Θ</span><span class="mord">∣</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span></span></span></span> 情况下的货郎延伸问题实例,因此 <a href="#%E8%B4%A7%E9%83%8E%E5%88%A4%E5%AE%9A%E9%97%AE%E9%A2%98">货郎判定问题</a> 可以<strong>多项式归约</strong>到货郎延伸问题。</p>
<h1 id="货郎判定问题">货郎判定问题</h1>
<p>货郎优化问题可以转变描述,变为一个<strong>判定问题</strong>:一个商品推销员要去若干个城市推销商品,该推销员从一个城市出发,需要经过所有城市后,回到出发地。是否存在一个行进路线,使得其行程小于 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">K</span></span></span></span> ?</p>
<p>该问题是一个 NPC 类问题,可以通过 <a href="./hc.html">哈密顿回路问题</a> 归约证明。</p>
<p>该问题同时也可以通过<a href="#%E8%B4%A7%E9%83%8E%E6%97%85%E6%B8%B8%E9%97%AE%E9%A2%98travelingsalesmanproblemtsp">货郎优化问题</a> 图灵归约证明 NP-hard。</p>
<p>证明方法为先证明<strong>货郎优化问题可以图灵归约到货郎延伸问题</strong>,再证明<strong>货郎延伸问题可以图灵归约到货郎判定问题</strong>,从而可以根据<strong>归约的传递性</strong>证明货郎优化问题可以图灵归约到货郎判定问题。</p>
<h2 id="npc-证明">NPC 证明</h2>
<p>以哈密顿回路问题实例 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>G</mi><mo>=</mo><mo stretchy="false">(</mo><mi>V</mi><mo separator="true">,</mo><mi>E</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">G=(V,E)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">G</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="mclose">)</span></span></span></span> 构造判定问题实例,令所有边权值为1,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi><mo>=</mo><mi mathvariant="normal">∣</mi><mi>V</mi><mi mathvariant="normal">∣</mi></mrow><annotation encoding="application/x-tex">K=|V|</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">K</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">∣</span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span><span class="mord">∣</span></span></span></span>,之后易得。</p>
<blockquote>
<p>货郎判定问题的实质就是在一个<strong>带权</strong>完全无向图中,找一个权值最小的哈密顿回路。</p>
</blockquote>
<h2 id="np-hard-证明-1">NP-hard 证明</h2>
<!-- 货郎优化问题图灵归约到货郎延伸问题的证明上面已经给出,下面将**货郎延伸问题图灵归约到货郎判定问题**。
设有货郎判定问题的解答算法 $TD(C, d, K),$ 其中 $C$ 为城市集合,$d$ 为城市之间的距离函数; $K$ 为正整数界值。若存在货郎旅游,其长度不超过 $K$,则算法 $TD(C, d, K)$ 回答 “Yes",否则回答“No”。
-->
<p>暂略,参考 P146 页证明。</p>
</body>
</html>