-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathilvr.py
285 lines (258 loc) · 9.3 KB
/
ilvr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import torch
from torch import nn
import numpy as np
import imageio
from tqdm import tqdm
from pathlib import Path
from resize import downsample_then_upsample
from celeba import CelebADS
from metfaces import MetFacesDS
from utils import image_to_grid, create_dir
class DDPM(nn.Module):
def linearly_schedule_beta(self):
self.beta = torch.linspace(
self.init_beta,
self.fin_beta,
self.n_diffusion_steps,
device=self.device,
)
self.alpha = 1 - self.beta
self.alpha_bar = torch.cumprod(self.alpha, dim=0)
def __init__(
self,
model,
img_size,
device,
image_channels=3,
n_diffusion_steps=1000,
init_beta=0.0001,
fin_beta=0.02,
):
super().__init__()
self.img_size = img_size
self.device = device
self.image_channels = image_channels
self.n_diffusion_steps = n_diffusion_steps
self.init_beta = init_beta
self.fin_beta = fin_beta
self.model = model.to(device)
self.linearly_schedule_beta()
@staticmethod
def index(x, diffusion_step):
return x[diffusion_step][:, None, None, None]
def sample_noise(self, batch_size):
return torch.randn(
size=(batch_size, self.image_channels, self.img_size, self.img_size),
device=self.device,
)
def sample_diffusion_step(self, batch_size):
return torch.randint(
0, self.n_diffusion_steps, size=(batch_size,), device=self.device,
)
def batchify_diffusion_steps(self, diffusion_step_idx, batch_size):
return torch.full(
size=(batch_size,),
fill_value=diffusion_step_idx,
dtype=torch.long,
device=self.device,
)
def perform_diffusion_process(self, ori_image, diffusion_step, rand_noise=None):
alpha_bar_t = self.index(self.alpha_bar, diffusion_step=diffusion_step)
mean = (alpha_bar_t ** 0.5) * ori_image
var = 1 - alpha_bar_t
if rand_noise is None:
rand_noise = self.sample_noise(batch_size=ori_image.size(0))
noisy_image = mean + (var ** 0.5) * rand_noise
return noisy_image
def forward(self, noisy_image, diffusion_step):
return self.model(
noisy_image=noisy_image.to(self.device), diffusion_step=diffusion_step,
)
@torch.inference_mode()
def take_denoising_step(self, noisy_image, diffusion_step_idx):
diffusion_step = self.batchify_diffusion_steps(
diffusion_step_idx=diffusion_step_idx, batch_size=noisy_image.size(0),
)
alpha_t = self.index(self.alpha, diffusion_step=diffusion_step)
beta_t = self.index(self.beta, diffusion_step=diffusion_step)
alpha_bar_t = self.index(self.alpha_bar, diffusion_step=diffusion_step)
pred_noise = self(
noisy_image=noisy_image.detach(), diffusion_step=diffusion_step,
)
model_mean = (1 / (alpha_t ** 0.5)) * (
noisy_image - ((beta_t / ((1 - alpha_bar_t) ** 0.5)) * pred_noise)
)
model_var = beta_t
if diffusion_step_idx > 0:
rand_noise = self.sample_noise(batch_size=noisy_image.size(0))
else:
rand_noise = torch.zeros(
size=(noisy_image.size(0), self.image_channels, self.img_size, self.img_size),
device=self.device,
)
return model_mean + (model_var ** 0.5) * rand_noise
@staticmethod
def _get_frame(x):
grid = image_to_grid(x, n_cols=int(x.size(0) ** 0.5))
frame = np.array(grid)
return frame
class DDPMWithILVR(DDPM):
def select_and_batchify_ref(self, dataset, data_dir, ref_idx, batch_size):
if dataset == "celeba":
ds = CelebADS(
data_dir=data_dir, split="test", img_size=self.img_size, hflip=False,
)
elif dataset == "metfaces":
ds = MetFacesDS(data_dir=data_dir, img_size=self.img_size, hflip=False)
return ds[ref_idx][None, ...].to(self.device).repeat(batch_size, 1, 1, 1)
@torch.inference_mode()
def refine_latent_var(
self, noisy_image, ref, diffusion_step_idx, last_cond_step, scale_factor=None,
):
"""
"Algorithm 1" line 7 to 9;
"${x^{\prime}_{t - 1}} \sim p_{\theta}(x^{\prime}_{t - 1} \vert x_{t})$"
"$y_{t - 1} \sim q(y_{t - 1} \vert y)$"
"$x_{t - 1} \leftarrow \phi_{N}(y_{t - 1}) + x^{\prime}_{t - 1} - \phi_{N}(x^{\prime}_{t - 1})$"
"""
less_noisy_image = self.take_denoising_step(noisy_image, diffusion_step_idx=diffusion_step_idx)
diffusion_step = self.batchify_diffusion_steps(
diffusion_step_idx=diffusion_step_idx, batch_size=noisy_image.size(0),
)
noisy_ref = self.perform_diffusion_process(
ori_image=ref,
diffusion_step=diffusion_step,
)
return torch.where(
diffusion_step[:, None, None, None].repeat(
1, self.image_channels, self.img_size, self.img_size,
) >= last_cond_step[:, None, None, None].repeat(
1, self.image_channels, self.img_size, self.img_size,
),
less_noisy_image + downsample_then_upsample(
noisy_ref, scale_factor=scale_factor,
) - downsample_then_upsample(less_noisy_image, scale_factor=scale_factor),
less_noisy_image,
)
def perform_ilvr(
self,
noisy_image,
ref,
start_diffusion_step_idx,
scale_factor,
last_cond_step,
n_frames=None,
):
if n_frames is not None:
frames = list()
x = noisy_image
pbar = tqdm(range(start_diffusion_step_idx, -1, -1), leave=False)
for diffusion_step_idx in pbar:
pbar.set_description("Denoising...")
x = self.refine_latent_var(
noisy_image=x,
ref=ref,
diffusion_step_idx=diffusion_step_idx,
last_cond_step=last_cond_step,
scale_factor=scale_factor,
)
if n_frames is not None and (
diffusion_step_idx % (self.n_diffusion_steps // n_frames) == 0
):
frames.append(self._get_frame(torch.cat([ref[: 1, ...], x], dim=0)))
return frames if n_frames is not None else x
def sample_using_single_ref(
self,
data_dir,
ref_idx,
scale_factor,
batch_size,
last_cond_step_idx=0,
dataset="celeba",
):
rand_noise = self.sample_noise(batch_size=batch_size - 1)
ref = self.select_and_batchify_ref(
dataset=dataset,
data_dir=data_dir,
ref_idx=ref_idx,
batch_size=batch_size - 1,
)
last_cond_step = self.batchify_diffusion_steps(
diffusion_step_idx=last_cond_step_idx, batch_size=batch_size - 1,
)
gen_image = self.perform_ilvr(
noisy_image=rand_noise,
ref=ref,
start_diffusion_step_idx=self.n_diffusion_steps - 1,
last_cond_step=last_cond_step,
scale_factor=scale_factor,
n_frames=None,
)
return torch.cat([ref[: 1, ...], gen_image], dim=0)
def sample_using_various_scale_factors(
self,
data_dir,
ref_idx,
last_cond_step_idx=0,
dataset="celeba",
):
return self.sample_using_single_ref(
data_dir=data_dir,
ref_idx=ref_idx,
scale_factor=None,
batch_size=6,
last_cond_step_idx=last_cond_step_idx,
dataset=dataset,
)
def sample_using_various_cond_range(
self,
data_dir,
ref_idx,
scale_factor,
last_cond_step_indices=range(0, 1000 + 1, 125),
dataset="celeba",
):
batch_size = len(last_cond_step_indices) + 1
rand_noise = self.sample_noise(batch_size=batch_size - 1)
ref = self.select_and_batchify_ref(
dataset=dataset,
data_dir=data_dir,
ref_idx=ref_idx,
batch_size=batch_size - 1,
)
last_cond_step = torch.tensor(last_cond_step_indices, device=self.device) - 1
gen_image = self.perform_ilvr(
noisy_image=rand_noise,
ref=ref,
start_diffusion_step_idx=self.n_diffusion_steps - 1,
last_cond_step=last_cond_step,
scale_factor=scale_factor,
n_frames=None,
)
return torch.cat([ref[: 1, ...], gen_image], dim=0)
def vis_ilvr(
self,
data_dir,
ref_idx,
scale_factor,
batch_size,
save_path,
dataset="celeba",
n_frames=100,
):
rand_noise = self.sample_noise(batch_size=batch_size - 1)
ref = self.select_and_batchify_ref(
dataset=dataset,
data_dir=data_dir,
ref_idx=ref_idx,
batch_size=batch_size,
)
frames = self.perform_ilvr(
noisy_image=rand_noise,
ref=ref,
start_diffusion_step_idx=self.n_diffusion_steps - 1,
scale_factor=scale_factor,
n_frames=n_frames,
)
create_dir(save_path)
imageio.mimsave(Path(save_path).with_suffix(".gif"), frames)