-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrobot_controller.py
214 lines (189 loc) · 9.26 KB
/
robot_controller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import cv2
import time
import numpy as np
import onnxruntime
import spidev as SPI
import xgoscreen.LCD_2inch as LCD_2inch
from PIL import Image, ImageDraw, ImageFont
from xgolib import XGO
import threading
import random
import atexit
# Constants defining camera resolution and known parameters for distance calculation
CAMERA_WIDTH = 320
CAMERA_HEIGHT = 240
KNOWN_DISTANCE = 76.2 # Example known distance from the camera to a face
KNOWN_WIDTH = 14.3 # Example known width of the face
FOCAL_LENGTH = 500 # Preset focal length of the camera
class DogRobotController:
def __init__(self):
self.dog = XGO('COM4', 115200, 'xgolite')
self.cap = cv2.VideoCapture(0)
self.cap.set(3, CAMERA_WIDTH)
self.cap.set(4, CAMERA_HEIGHT)
self.session = onnxruntime.InferenceSession('/home/pi/model/Model.onnx')
self.stop_thread = False
self.t = None
def sigmoid(self, x):
return 1. / (1 + np.exp(-x))
def tanh(self, x):
return 2. / (1 + np.exp(-2 * x)) - 1
def preprocess(self, src_img, size):
output = cv2.resize(src_img, (size[0], size[1]), interpolation=cv2.INTER_AREA)
output = output.transpose(2, 0, 1)
output = output.reshape((1, 3, size[1], size[0])) / 255
return output.astype('float32')
def nms(self, dets, thresh=0.45):
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
output = []
for i in keep:
output.append(dets[i].tolist())
return output
def detection(self, session, img, input_width, input_height, thresh):
try:
pred = []
H, W, _ = img.shape
data = self.preprocess(img, [input_width, input_height])
input_name = session.get_inputs()[0].name
feature_map = session.run([], {input_name: data})[0][0]
feature_map = feature_map.transpose(1, 2, 0)
feature_map_height = feature_map.shape[0]
feature_map_width = feature_map.shape[1]
for h in range(feature_map_height):
for w in range(feature_map_width):
data = feature_map[h][w]
obj_score, cls_score = data[0], data[5:].max()
score = (obj_score ** 0.6) * (cls_score ** 0.4)
if score > thresh:
cls_index = np.argmax(data[5:])
x_offset, y_offset = self.tanh(data[1]), self.tanh(data[2])
box_width, box_height = self.sigmoid(data[3]), self.sigmoid(data[4])
box_cx = (w + x_offset) / feature_map_width
box_cy = (h + y_offset) / feature_map_height
x1, y1 = box_cx - 0.5 * box_width, box_cy - 0.5 * box_height
x2, y2 = box_cx + 0.5 * box_width, box_cy + 0.5 * box_height
x1, y1, x2, y2 = int(x1 * W), int(y1 * H), int(x2 * W), int(y2 * H)
pred.append([x1, y1, x2, y2, score, cls_index])
return self.nms(np.array(pred))
except:
return None
def object_data(self, image):
input_width, input_height = 352, 352
bboxes = self.detection(self.session, image, input_width, input_height, 0.65)
return bboxes
def distance_finder(self, focal_length, real_width, width_in_rf_image):
distance = (real_width * focal_length) / width_in_rf_image
return distance
def move_robot_based_on_distance(self, distance, target_distance=50, too_close_distance=10):
"""
Moves the robot forward if the object is centered and the distance is more than the target distance.
If the object is too close, the robot stops and turns around.
:param distance: The current distance from the target (in cm).
:param target_distance: The desired distance to maintain from the target (in cm).
:param too_close_distance: The distance at which the robot considers it is too close to the object (in cm).
"""
if distance > target_distance:
# If the robot is further than the target distance, move forward
self.dog.move('x', 10) # Move forward at a speed of 10 (arbitrary units)
elif distance < too_close_distance:
# If the robot is closer than the too close distance, stop moving and turn around
self.dog.stop() # Stop the robot's movement
time.sleep(1) # Wait for a moment before turning
self.dog.move('y', -5 if random.choice([True, False]) else 5) # Turn left or right randomly
time.sleep(1) # Turn for a bit
self.dog.stop() # Stop the turning movement
else:
# If the robot is within the target distance and not too close, do not move
self.dog.stop()
def move_robot_based_on_position(self, object_center_x, frame_width):
"""
Adjusts the robot's movement based on the object's position in the frame.
The object should be positioned in a central area of the frame.
"""
center_tolerance = frame_width * 0.2 # Increased tolerance range for centering
center_range = (frame_width / 2 - center_tolerance, frame_width / 2 + center_tolerance)
if object_center_x < center_range[0]: # Object is left of center
self.dog.move('y', -5) # Move left
elif object_center_x > center_range[1]: # Object is right of center
self.dog.move('y', 5) # Move right
else: # Object is within central range
# The object is centered; no lateral movement is needed
self.dog.move('x', 10) # Move forward
pass # You could potentially add a command to move forward here if necessary
def move_robot_towards_person(self, object_center_x, frame_width, distance, target_distance):
"""
Moves the robot towards the person if they are detected.
The robot will maintain a specific distance to the person.
"""
center_tolerance = frame_width * 0.1
center_range = (frame_width / 2 - center_tolerance, frame_width / 2 + center_tolerance)
# Centering logic
if object_center_x < center_range[0]:
self.dog.move('y', -5) # Move left
elif object_center_x > center_range[1]:
self.dog.move('y', 5) # Move right
# Distance maintaining logic
if distance > target_distance + 10: # Add a margin to prevent too much forward-backward movement
self.dog.move('x', 10) # Move forward
elif distance < target_distance - 10: # Subtract a margin to prevent too much forward-backward movement
self.dog.move('x', -10) # Move backward
def run(self):
KNOWN_WIDTH = 14.3 # Width of the object (person's face in this case)
focal_length_found = 500
frame_width = self.cap.get(cv2.CAP_PROP_FRAME_WIDTH)
target_distance = 50 # The desired distance from the object (in cm)
while not self.stop_thread:
_, frame = self.cap.read()
# Use object detection instead of face recognition
bboxes = self.object_data(frame)
if bboxes:
for bbox in bboxes:
# Assuming the first class (index 0) is 'person'
if int(bbox[5]) == 0: # Check if the detected class is a person
x1, y1, x2, y2 = bbox[:4]
object_width_in_frame = x2 - x1
object_center_x = (x1 + x2) / 2
distance = self.distance_finder(focal_length_found, KNOWN_WIDTH, object_width_in_frame)
print(f"Distance to object: {distance} cm")
# Move robot based on position and distance
self.move_robot_based_on_position(object_center_x, frame_width)
self.move_robot_based_on_distance(distance, target_distance)
break # Stop after processing the first person
else:
# If no person is detected, turn in place to search
print("No person detected. Turning to search...")
self.dog.move('y', 5) # Turn right or left
time.sleep(1) # Turn for a bit
self.dog.stop()
def start(self):
self.t = threading.Thread(target=self.run)
self.t.start()
def stop(self):
self.stop_thread = True
if self.t:
self.t.join()
cv2.destroyAllWindows()
controller = DogRobotController()
controller.start()
time.sleep(40) # Let it run for e.g. 40 seconds
controller.stop()