-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample.py
32 lines (24 loc) · 1.26 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from jumpcoder import JumpCoder
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--port_infilling", type=int, default=12345)
parser.add_argument("--port_generation", type=int, default=12346)
args = parser.parse_args()
problem_list = [
"\ndef minSubArraySum(nums):\n \"\"\"\n Given an array of integers nums, find the minimum sum of any non-empty sub-array\n of nums.\n Example\n minSubArraySum([2, 3, 4, 1, 2, 4]) == 1\n minSubArraySum([-1, -2, -3]) == -6\n \"\"\"\n"
]
for problem in problem_list:
print("~~~~~~~~~~~~~~~~~ Using Autoregression ~~~~~~~~~~~~~~~~~")
JumpCoder(
port_generation=args.port_generation,
port_infilling=args.port_infilling,
language="Python",
stop_tokens=["<EOT>", "\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif", "\n\"\"\""] # HumanEval's stop tokens
).generate(problem, enable_jumpcoder=False)
print("~~~~~~~~~~~~~~~~~ Using JumpCoder ~~~~~~~~~~~~~~~~~")
JumpCoder(
port_generation=args.port_generation,
port_infilling=args.port_infilling,
language="Python",
stop_tokens=["<EOT>", "\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif", "\n\"\"\""] # HumanEval's stop tokens
).generate(problem, enable_jumpcoder=True)