-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfeaturizer.py
189 lines (157 loc) · 6.38 KB
/
featurizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from sentence_transformers import SentenceTransformer
from qdrant_client import QdrantClient, models
from pymongo import MongoClient
import uuid
import os
from dotenv import load_dotenv
import nltk
from nltk.tokenize import sent_tokenize
from clearml import Task, PipelineDecorator
import re
load_dotenv()
nltk.download('punkt')
class DataFeaturizer:
def __init__(self):
# MongoDB setup
self.mongo_client = MongoClient(os.getenv('MONGO_URI'))
self.db = self.mongo_client['ros2_rag']
# Qdrant setup
self.qdrant = QdrantClient("localhost", port=int(os.getenv('QDRANT_PORT')))
self.model = SentenceTransformer('all-MiniLM-L6-v2')
# Collection names
self.qdrant_collection = "ros2_vectors"
def clean_text(self, text):
"""Clean and normalize text"""
if not text or not isinstance(text, str):
return ""
# Remove URLs
text = re.sub(r'http\S+|www.\S+', '', text)
# Remove special characters and extra whitespace
text = re.sub(r'[^\w\s\-\.]', ' ', text)
text = re.sub(r'\s+', ' ', text)
return text.strip()
def chunk_text(self, text, max_chunk_size=512):
"""Split text into chunks"""
sentences = sent_tokenize(text)
chunks = []
current_chunk = []
current_size = 0
for sentence in sentences:
sentence_size = len(sentence.split())
if current_size + sentence_size > max_chunk_size:
if current_chunk:
chunks.append(' '.join(current_chunk))
current_chunk = [sentence]
current_size = sentence_size
else:
current_chunk.append(sentence)
current_size += sentence_size
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
def create_vectors(self, chunks, metadata):
"""Create vectors from text chunks"""
vectors = []
for chunk in chunks:
embedding = self.model.encode(chunk)
vectors.append(models.PointStruct(
id=str(uuid.uuid4()),
vector=embedding.tolist(),
payload={
"text": chunk,
"source": metadata.get('source', 'unknown'),
"url": metadata.get('url', ''),
"type": metadata.get('type', 'unknown')
}
))
return vectors
def initialize_qdrant(self):
"""Initialize Qdrant collection"""
vector_size = self.model.get_sentence_embedding_dimension()
try:
self.qdrant.get_collection(self.qdrant_collection)
print(f"Collection {self.qdrant_collection} exists")
except:
self.qdrant.create_collection(
collection_name=self.qdrant_collection,
vectors_config=models.VectorParams(
size=vector_size,
distance=models.Distance.COSINE
)
)
print(f"Created new collection: {self.qdrant_collection}")
def process_github_data(self):
"""Process GitHub repository data"""
collection = self.db['github_repo']
vectors = []
for doc in collection.find():
if doc.get('content'):
print(f"Processing https://github.com/{doc['owner']}/{doc['repo']}/blob/main/{doc['path']}")
clean_content = self.clean_text(doc['content'])
chunks = self.chunk_text(clean_content)
metadata = {
'source': 'github',
'url': f"https://github.com/{doc['owner']}/{doc['repo']}/blob/main/{doc['path']}",
'type': 'documentation'
}
vectors.extend(self.create_vectors(chunks, metadata))
return vectors
def process_web_docs(self):
"""Process web documentation"""
collection = self.db['raw_docs']
vectors = []
for doc in collection.find():
if doc.get('text_content'):
print(f"Processing website data: {doc.get('url', '--No url found--')}")
clean_content = self.clean_text(doc['text_content'])
chunks = self.chunk_text(clean_content)
metadata = {
'source': 'web',
'url': doc.get('url', ''),
'type': 'documentation'
}
vectors.extend(self.create_vectors(chunks, metadata))
return vectors
def process_youtube_data(self):
"""Process YouTube transcripts"""
collection = self.db['youtube_transcripts']
vectors = []
for doc in collection.find():
if doc.get('transcript'):
print(f"Processing transcript from video: {doc.get('video_id')}")
clean_content = self.clean_text(doc['transcript'])
chunks = self.chunk_text(clean_content)
metadata = {
'source': 'youtube',
'url': f"https://youtube.com/watch?v={doc['video_id']}",
'type': 'video_transcript'
}
vectors.extend(self.create_vectors(chunks, metadata))
return vectors
def process_all_data(self):
"""Process all data sources and upload to Qdrant"""
self.initialize_qdrant()
# Process each data source
all_vectors = []
all_vectors.extend(self.process_github_data())
all_vectors.extend(self.process_web_docs())
all_vectors.extend(self.process_youtube_data())
# Upload vectors in batches
batch_size = 100
for i in range(0, len(all_vectors), batch_size):
batch = all_vectors[i:i + batch_size]
self.qdrant.upload_points(
collection_name=self.qdrant_collection,
points=batch
)
print(f"Uploaded batch {i//batch_size + 1}/{len(all_vectors)//batch_size + 1}")
return len(all_vectors)
@PipelineDecorator.component(return_values=['total_vectors'])
def run_featurizer():
featurizer = DataFeaturizer()
total_vectors = featurizer.process_all_data()
print(f"Total vectors created: {total_vectors}")
return total_vectors
if __name__ == "__main__":
# task = Task.init(project_name='ROS2_RAG', task_name='Data Featurization')
run_featurizer()