-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path1st_evaluation.py
520 lines (447 loc) · 17.5 KB
/
1st_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
import argparse
import json
import sys
import zipfile
from collections import Counter
from bleu_metric.bleu import Bleu
from rouge_metric.rouge import Rouge
import warnings
warnings.filterwarnings('ignore',category=RuntimeWarning)
EMPTY = ''
YESNO_LABELS = set(['Yes', 'No', 'Depends'])
def normalize(s):
"""
Normalize strings to space joined chars.
Args:
s: a list of strings.
Returns:
A list of normalized strings.
"""
if not s:
return s
normalized = []
for ss in s:
tokens = [c for c in list(ss) if len(c.strip()) != 0]
normalized.append(' '.join(tokens))
return normalized
def data_check(obj, task):
"""
Check data.
Raises:
Raises AssertionError when data is not legal.
"""
assert 'question_id' in obj, "Missing 'question_id' field."
assert 'question_type' in obj, \
"Missing 'question_type' field. question_id: {}".format(obj['question_type'])
assert 'yesno_answers' in obj, \
"Missing 'yesno_answers' field. question_id: {}".format(obj['question_id'])
assert isinstance(obj['yesno_answers'], list), \
r"""'yesno_answers' field must be a list, if the 'question_type' is not
'YES_NO', then this field should be an empty list.
question_id: {}""".format(obj['question_id'])
assert 'entity_answers' in obj, \
"Missing 'entity_answers' field. question_id: {}".format(obj['question_id'])
assert isinstance(obj['entity_answers'], list) \
and len(obj['entity_answers']) > 0, \
r"""'entity_answers' field must be a list, and has at least one element,
which can be a empty list. question_id: {}""".format(obj['question_id'])
def read_file(file_name, task, is_ref=False):
"""
Read predict answers or reference answers from file.
Args:
file_name: the name of the file containing predict result or reference
result.
Returns:
A dictionary mapping question_id to the result information. The result
information itself is also a dictionary with has four keys:
- question_type: type of the query.
- yesno_answers: A list of yesno answers corresponding to 'answers'.
- answers: A list of predicted answers.
- entity_answers: A list, each element is also a list containing the entities
tagged out from the corresponding answer string.
"""
def _open(file_name, mode, zip_obj=None):
if zip_obj is not None:
return zip_obj.open(file_name, mode)
return open(file_name, mode)
results = {}
keys = ['answers', 'yesno_answers', 'entity_answers', 'question_type']
if is_ref:
keys += ['source']
zf = zipfile.ZipFile(file_name, 'r') if file_name.endswith('.zip') else None
file_list = [file_name] if zf is None else zf.namelist()
for fn in file_list:
for line in _open(fn, 'r', zip_obj=zf):
try:
obj = json.loads(line.strip())
except ValueError:
raise ValueError("Every line of data should be legal json")
data_check(obj, task)
qid = obj['question_id']
assert qid not in results, "Duplicate question_id: {}".format(qid)
results[qid] = {}
for k in keys:
results[qid][k] = obj[k]
return results
def compute_bleu_rouge(pred_dict, ref_dict, bleu_order=4):
"""
Compute bleu and rouge scores.
"""
assert set(pred_dict.keys()) == set(ref_dict.keys()), \
"missing keys: {}".format(set(ref_dict.keys()) - set(pred_dict.keys()))
scores = {}
bleu_scores, _ = Bleu(bleu_order).compute_score(ref_dict, pred_dict)
for i, bleu_score in enumerate(bleu_scores):
scores['Bleu-%d' % (i + 1)] = bleu_score
rouge_score, _ = Rouge().compute_score(ref_dict, pred_dict)
scores['Rouge-L'] = rouge_score
return scores
def local_prf(pred_list, ref_list):
"""
Compute local precision recall and f1-score,
given only one prediction list and one reference list
"""
common = Counter(pred_list) & Counter(ref_list)
num_same = sum(common.values())
if num_same == 0:
return 0, 0, 0
p = 1.0 * num_same / len(pred_list)
r = 1.0 * num_same / len(ref_list)
f1 = (2 * p * r) / (p + r)
return p, r, f1
def compute_prf(pred_dict, ref_dict):
"""
Compute precision recall and f1-score.
"""
pred_question_ids = set(pred_dict.keys())
ref_question_ids = set(ref_dict.keys())
correct_preds, total_correct, total_preds = 0, 0, 0
for question_id in ref_question_ids:
pred_entity_list = pred_dict.get(question_id, [[]])
assert len(pred_entity_list) == 1, \
'the number of entity list for question_id {} is not 1.'.format(question_id)
pred_entity_list = pred_entity_list[0]
all_ref_entity_lists = ref_dict[question_id]
best_local_f1 = 0
best_ref_entity_list = None
for ref_entity_list in all_ref_entity_lists:
local_f1 = local_prf(pred_entity_list, ref_entity_list)[2]
if local_f1 > best_local_f1:
best_ref_entity_list = ref_entity_list
best_local_f1 = local_f1
if best_ref_entity_list is None:
if len(all_ref_entity_lists) > 0:
best_ref_entity_list = sorted(all_ref_entity_lists,
key=lambda x: len(x))[0]
else:
best_ref_entity_list = []
gold_entities = set(best_ref_entity_list)
pred_entities = set(pred_entity_list)
correct_preds += len(gold_entities & pred_entities)
total_preds += len(pred_entities)
total_correct += len(gold_entities)
p = float(correct_preds) / total_preds if correct_preds > 0 else 0
r = float(correct_preds) / total_correct if correct_preds > 0 else 0
f1 = 2 * p * r / (p + r) if correct_preds > 0 else 0
return {'Precision': p, 'Recall': r, 'F1': f1}
def prepare_prf(pred_dict, ref_dict):
"""
Prepares data for calculation of prf scores.
"""
preds = {k: v['entity_answers'] for k, v in list(pred_dict.items())}
refs = {k: v['entity_answers'] for k, v in list(ref_dict.items())}
return preds, refs
def filter_dict(result_dict, key_tag):
"""
Filter a subset of the result_dict, where keys ends with 'key_tag'.
"""
filtered = {}
for k, v in list(result_dict.items()):
if k.endswith(key_tag):
filtered[k] = v
return filtered
def get_metrics(pred_result, ref_result, task, source):
"""
Computes metrics.
"""
metrics = {}
ref_result_filtered = {}
pred_result_filtered = {}
if source == 'both':
ref_result_filtered = ref_result
pred_result_filtered = pred_result
else:
for question_id, info in list(ref_result.items()):
if info['source'] == source:
ref_result_filtered[question_id] = info
if question_id in pred_result:
pred_result_filtered[question_id] = pred_result[question_id]
if task == 'main' or task == 'all' or task == 'description':
pred_dict, ref_dict = prepare_bleu(pred_result_filtered,
ref_result_filtered,task)
metrics = compute_bleu_rouge(pred_dict, ref_dict)
elif task == 'yesno':
pred_dict, ref_dict = prepare_bleu(pred_result_filtered,
ref_result_filtered,
task)
keys = ['Yes', 'No', 'Depends']
preds = [filter_dict(pred_dict, k) for k in keys]
refs = [filter_dict(ref_dict, k) for k in keys]
metrics = compute_bleu_rouge(pred_dict, ref_dict)
for k, pred, ref in zip(keys, preds, refs):
m = compute_bleu_rouge(pred, ref)
k_metric = [(k + '|' + key, v) for key, v in list(m.items())]
metrics.update(k_metric)
elif task == 'entity':
pred_dict, ref_dict = prepare_prf(pred_result_filtered,
ref_result_filtered)
pred_dict_bleu, ref_dict_bleu = prepare_bleu(pred_result_filtered,
ref_result_filtered,
task)
metrics = compute_prf(pred_dict, ref_dict)
metrics.update(compute_bleu_rouge(pred_dict_bleu, ref_dict_bleu))
else:
raise ValueError("Illegal task name: {}".format(task))
return metrics
def prepare_bleu(pred_result, ref_result, task):
"""
Prepares data for calculation of bleu and rouge scores.
"""
pred_list, ref_list = [], []
qids = list(ref_result.keys())
for qid in qids:
if task == 'main':
pred, ref = get_main_result(qid, pred_result, ref_result)
elif task == 'yesno':
pred, ref = get_yesno_result(qid, pred_result, ref_result)
elif task == 'all':
pred, ref = get_all_result(qid, pred_result, ref_result)
elif task == 'entity':
pred, ref = get_entity_result(qid, pred_result, ref_result)
elif task == 'description':
pred, ref = get_desc_result(qid, pred_result, ref_result)
else:
raise ValueError("Illegal task name: {}".format(task))
if pred and ref:
pred_list += pred
ref_list += ref
pred_dict = dict(pred_list)
ref_dict = dict(ref_list)
for qid, ans in list(ref_dict.items()):
ref_dict[qid] = normalize(ref_dict[qid])
pred_dict[qid] = normalize(pred_dict.get(qid, [EMPTY]))
if not ans or ans == [EMPTY]:
del ref_dict[qid]
del pred_dict[qid]
for k, v in list(pred_dict.items()):
assert len(v) == 1, \
"There should be only one predict answer. question_id: {}".format(k)
return pred_dict, ref_dict
def get_main_result(qid, pred_result, ref_result):
"""
Prepare answers for task 'main'.
Args:
qid: question_id.
pred_result: A dict include all question_id's result information read
from args.pred_file.
ref_result: A dict incluce all question_id's result information read
from args.ref_file.
Returns:
Two lists, the first one contains predict result, the second
one contains reference result of the same question_id. Each list has
elements of tuple (question_id, answers), 'answers' is a list of strings.
"""
ref_ans = ref_result[qid]['answers']
if not ref_ans:
ref_ans = [EMPTY]
pred_ans = pred_result.get(qid, {}).get('answers', [])[:1]
if not pred_ans:
pred_ans = [EMPTY]
return [(qid, pred_ans)], [(qid, ref_ans)]
def get_entity_result(qid, pred_result, ref_result):
"""
Prepare answers for task 'entity'.
Args:
qid: question_id.
pred_result: A dict include all question_id's result information read
from args.pred_file.
ref_result: A dict incluce all question_id's result information read
from args.ref_file.
Returns:
Two lists, the first one contains predict result, the second
one contains reference result of the same question_id. Each list has
elements of tuple (question_id, answers), 'answers' is a list of strings.
"""
if ref_result[qid]['question_type'] != 'ENTITY':
return None, None
return get_main_result(qid, pred_result, ref_result)
def get_desc_result(qid, pred_result, ref_result):
"""
Prepare answers for task 'description'.
Args:
qid: question_id.
pred_result: A dict include all question_id's result information read
from args.pred_file.
ref_result: A dict incluce all question_id's result information read
from args.ref_file.
Returns:
Two lists, the first one contains predict result, the second
one contains reference result of the same question_id. Each list has
elements of tuple (question_id, answers), 'answers' is a list of strings.
"""
if ref_result[qid]['question_type'] != 'DESCRIPTION':
return None, None
return get_main_result(qid, pred_result, ref_result)
def get_yesno_result(qid, pred_result, ref_result):
"""
Prepare answers for task 'yesno'.
Args:
qid: question_id.
pred_result: A dict include all question_id's result information read
from args.pred_file.
ref_result: A dict incluce all question_id's result information read
from args.ref_file.
Returns:
Two lists, the first one contains predict result, the second
one contains reference result of the same question_id. Each list has
elements of tuple (question_id, answers), 'answers' is a list of strings.
"""
def _uniq(li, is_ref):
uniq_li = []
left = []
keys = set()
for k, v in li:
if k not in keys:
uniq_li.append((k, v))
keys.add(k)
else:
left.append((k, v))
if is_ref:
dict_li = dict(uniq_li)
for k, v in left:
dict_li[k] += v
uniq_li = [(k, v) for k, v in list(dict_li.items())]
return uniq_li
def _expand_result(uniq_li):
expanded = uniq_li[:]
keys = set([x[0] for x in uniq_li])
for k in YESNO_LABELS - keys:
expanded.append((k, [EMPTY]))
return expanded
def _get_yesno_ans(qid, result_dict, is_ref=False):
if qid not in result_dict:
return [(str(qid) + '_' + k, v) for k, v in _expand_result([])]
yesno_answers = result_dict[qid]['yesno_answers']
answers = result_dict[qid]['answers']
lbl_ans = _uniq([(k, [v]) for k, v in zip(yesno_answers, answers)], is_ref)
ret = [(str(qid) + '_' + k, v) for k, v in _expand_result(lbl_ans)]
return ret
if ref_result[qid]['question_type'] != 'YES_NO':
return None, None
ref_ans = _get_yesno_ans(qid, ref_result, is_ref=True)
pred_ans = _get_yesno_ans(qid, pred_result)
return pred_ans, ref_ans
def get_all_result(qid, pred_result, ref_result):
"""
Prepare answers for task 'all'.
Args:
qid: question_id.
pred_result: A dict include all question_id's result information read
from args.pred_file.
ref_result: A dict incluce all question_id's result information read
from args.ref_file.
Returns:
Two lists, the first one contains predict result, the second
one contains reference result of the same question_id. Each list has
elements of tuple (question_id, answers), 'answers' is a list of strings.
"""
if ref_result[qid]['question_type'] == 'YES_NO':
return get_yesno_result(qid, pred_result, ref_result)
return get_main_result(qid, pred_result, ref_result)
def format_metrics(metrics, task, err_msg, sources):
"""
Format metrics. 'err' field returns any error occured during evaluation.
Args:
metrics: A dict object contains metrics for different tasks.
task: Task name.
err_msg: Exception raised during evaluation.
Returns:
Formatted result.
"""
result = {}
# sources = ["both", "search", "zhidao"]
if err_msg is not None:
return {'errorMsg': str(err_msg), 'errorCode': 1, 'data': []}
data = []
# if task != 'all' and task != 'main':
# sources = ["both"]
if task == 'entity':
metric_names = ["Bleu-4", "Rouge-L"]
metric_names_prf = ["F1", "Precision", "Recall"]
for name in metric_names + metric_names_prf:
for src in sources:
obj = {
"name": name,
"value": round(metrics[src].get(name, 0) * 100, 2),
"type": src,
}
data.append(obj)
elif task == 'yesno':
metric_names = ["Bleu-4", "Rouge-L"]
details = ["Yes", "No", "Depends"]
src = sources[0]
for name in metric_names:
obj = {
"name": name,
"value": round(metrics[src].get(name, 0) * 100, 2),
"type": 'All',
}
data.append(obj)
for d in details:
obj = {
"name": name,
"value": round(metrics[src].get(d + '|' + name, 0) * 100, 2),
"type": d,
}
data.append(obj)
else:
metric_names = ["Bleu-4", "Rouge-L"]
for name in metric_names:
for src in sources:
obj = {
"name": name,
"value": round(metrics[src].get(name, 0) * 100, 2),
"type": src,
}
data.append(obj)
result["data"] = data
result["errorCode"] = 0
result["errorMsg"] = "success"
return result
##
def score(submit_file, test_file):
# """
# Do evaluation.
# """
err = None
metrics = {}
task = 'main'
try:
pred_result = read_file(submit_file,task)
ref_result = read_file(test_file,task,is_ref=True)
# sources = ['both','search','zhidao']
sources = ['zhidao']
if task not in set(['main','all']):
sources = sources[:1]
for source in sources:
metrics[source] = get_metrics(
pred_result, ref_result, task, source)
except ValueError as ve:
err = ve
except AssertionError as ae:
err = ae
final_result = format_metrics(metrics, task, err, sources)
return final_result['data']
##
if __name__ == '__main__':
print(score(sys.argv[1],sys.argv[2]))