forked from wanrenjie/CoRRN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain1.py
311 lines (253 loc) · 11.8 KB
/
main1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import argparse, os
import numpy as np
import torch
import random
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from network1 import ReflectionNetwork
from utils import PSNR, MatrixToImage
from torchvision.utils import save_image
from SSIMLoss import SSIMLoss
from SILoss import SILoss
from MMDLoss import MMDLoss
import torchvision
from tensorboardX import SummaryWriter
import flow_transforms
import scipy.io as sio
import datetime
import torchvision.transforms as transforms
import datasets
import time
model_names = 'sasa'
dataset_names = sorted(name for name in datasets.__all__)
parser = argparse.ArgumentParser(description='PyTorch FlowNet Training on several datasets',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('--dataset', metavar='DATASET', default='mpi_sintel_both',
choices=dataset_names,
help='dataset type : ' +
' | '.join(dataset_names))
parser.add_argument('-s', '--split', default=80,
help='test-val split file')
parser.add_argument('--arch', '-a', metavar='ARCH', default='FaceGeneration',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names))
parser.add_argument('--solver', default='adam',choices=['adam','sgd'],
help='solver algorithms')
parser.add_argument('-j', '--workers', default=8, type=int, metavar='N',
help='number of data loading workers')
parser.add_argument('--epochs', default=300, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--epoch-size', default=30000, type=int, metavar='N',
help='manual epoch size (will match dataset size if set to 0)')
parser.add_argument('-b', '--batch-size', default=2, type=int,
metavar='N', help='mini-batch size')
parser.add_argument('--lr', '--learning-rate', default=0.0001, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum for sgd, alpha parameter for adam')
parser.add_argument('--beta', default=0.999, type=float, metavar='M',
help='beta parameters for adam')
parser.add_argument('--weight-decay', '--wd', default=4e-4, type=float,
metavar='W', help='weight decay')
parser.add_argument('--bias-decay', default=0, type=float,
metavar='B', help='bias decay')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', default=None,
help='path to pre-trained model')
parser.add_argument('--no-date', action='store_true',
help='don\'t append date timestamp to folder' )
parser.add_argument('--milestones', default=[18,60,80], nargs='*', help='epochs at which learning rate is divided by 2')
n_iter = 0
def main():
torch.cuda.set_device(1)
global args, best_EPE, save_path
args = parser.parse_args()
save_path = '{},{},{}epochs{},b{},lr{}'.format(
args.arch,
args.solver,
args.epochs,
',epochSize'+str(args.epoch_size) if args.epoch_size > 0 else '',
args.batch_size,
args.lr)
if not args.no_date:
timestamp = datetime.datetime.now().strftime("%m-%d-%H:%M")
save_path = os.path.join(timestamp,save_path)
save_path = os.path.join(args.dataset,save_path)
print('=> will save everything to {}'.format(save_path))
if not os.path.exists(save_path):
os.makedirs(save_path)
###tensorboard
train_writer = SummaryWriter(os.path.join(save_path,'train'))
test_writer = SummaryWriter(os.path.join(save_path,'test'))
training_output_writers = []
for i in range(15):
training_output_writers.append(SummaryWriter(os.path.join(save_path,'train',str(i))))
output_writers = []
for i in range(15):
output_writers.append(SummaryWriter(os.path.join(save_path,'test',str(i))))
################
######## Data transformation code
input_transform = transforms.Compose([
flow_transforms.ArrayToTensor(), ##from numpy array to tensor
transforms.Normalize(mean=[0,0,0], std=[255,255,255]) ##divide each channel of the image by 255
]) ###input image transform
background_transform = transforms.Compose([
flow_transforms.ArrayToTensor(),
transforms.Normalize(mean=[0,0,0], std=[255,255,255])
]) ####background image transform
gradient_transform = transforms.Compose([
flow_transforms.ArrayToTensor(),
transforms.Normalize(mean=[0,0,0], std=[255,255,255])
]) ##gradient transform
reflection_transform = transforms.Compose([
flow_transforms.ArrayToTensor(),
transforms.Normalize(mean=[0,0,0], std=[255,255,255])
]) ##reflection transform
co_transform = flow_transforms.Compose([
flow_transforms.RandomVerticalFlip(), ##flip the image vertically
flow_transforms.RandomHorizontalFlip(), ##flip the image horizontally
#flow_transforms.RandomColorWarp(0,0)
])
#####data loading see the mpi_sintel_both file in datasets folder
print("=> fetching img pairs in '{}'".format(args.data))
train_set, test_set = datasets.__dict__[args.dataset](
args.data,
transform=input_transform,
gradient_transform = gradient_transform,
reflection_transform = reflection_transform,
background_transform = background_transform,
co_transform = co_transform
)
print('{} samples found, {} train samples, {} test samples '.format(len(train_set), len(train_set), len(test_set)))
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=args.batch_size,
num_workers=0, pin_memory=True, shuffle=True)
val_loader = torch.utils.data.DataLoader(
test_set, batch_size=args.batch_size,
num_workers=0, pin_memory=True, shuffle=False)
vgg = torchvision.models.vgg16_bn(pretrained = True) ##load the vgg model
vgglist = list(vgg.features.children())
model = ReflectionNetwork(vgglist) ##load the training model
optimizer = optim.Adam(model.parameters(), lr = args.lr)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.milestones, gamma=0.5)
model = model.cuda()
if args.pretrained:
data = torch.load('/home/Test25/model2/checkpoint_81.pth.tar')
model.load_state_dict(data['state_dict'])
####load the loss functions
ssimLoss = SSIMLoss().cuda()
L1Loss = nn.L1Loss().cuda()
siLoss = SILoss().cuda()
mmdLoss = MMDLoss().cuda()
num_epoches = 80
for epoch in range(num_epoches+1):
scheduler.step()
print('epoch {}'.format(epoch))
train(train_loader, optimizer, ssimLoss, L1Loss, siLoss, mmdLoss, model, train_writer, training_output_writers, epoch) ##training code
validate(val_loader, model, L1Loss, test_writer, output_writers, epoch)
if epoch % 1 == 0:
#save the model
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
},epoch+1)
def train(train_loader, optimizer, ssimLoss, L1Loss, siLoss, mmdLoss, model, train_writer, training_output_writers, epoch):
global n_iter
loss_background = AverageMeter()
loss_reflection = AverageMeter()
loss_gradient = AverageMeter()
data_time = AverageMeter()
#switch to train mode
model.train()
end = time.time()
for iteration, (mixture, background, reflection, gradient) in enumerate(train_loader):
data_time.update(time.time() - end)
input = [j.cuda() for j in mixture]
input = Variable(input[0], requires_grad = True) ##read the input image
background = [j.cuda() for j in background]
background = Variable(background[0], requires_grad = False) ##read the background image
reflection = [j.cuda() for j in reflection]
reflection = Variable(reflection[0], requires_grad = False) ##read the reflection image
gradient = [j.cuda() for j in gradient]
gradient = Variable(gradient[0], requires_grad = False) ##read the gradient image
output = model.forward(input)
outputB = output[0]
outputR = output[1]
outputG = output[2]
bl = 0.8*ssimLoss(outputB, background) + L1Loss(outputB, background) + 0.5*mmdLoss(outputB, background) ##loss functios for background
rl = ssimLoss(outputR, reflection) + 0.5*mmdLoss(outputR, reflection)##loss functios for reflection
gl = siLoss(outputG, gradient)##loss functios for gradient
loss_background.update(bl.data[0], input.size(0))
loss_reflection.update(rl.data[0], input.size(0))
loss_gradient.update(gl.data[0], input.size(0))
totalLoss = bl + rl + gl ##based on my experiments different weighting coefficients on rl may generate different results, if you make the coefficients smaller, maybe the results can be better
#totalLoss = bl+gl
optimizer.zero_grad()
totalLoss.backward() ##backward the loss fucntions
optimizer.step()
train_writer.add_scalar('train_loss', bl.data[0], n_iter) ###show the loss function values on tensorboard
###show the intermediate results on tensorboard
if iteration < len(training_output_writers): # log first output of first batches
#if epoch == 0:
training_output_writers[iteration].add_image('TInputs', input[0].data.cpu(), epoch)
training_output_writers[iteration].add_image('targetB', background[0].data.cpu(), epoch)
training_output_writers[iteration].add_image('outputB', outputB[0].data.cpu(), epoch)
n_iter += 1
if iteration % args.print_freq == 0:
print("Finish{}/{}epoch, {} iterations Loss-b: {}, Loss_g:{}".format(epoch, 80, iteration, loss_background.avg, loss_gradient.avg))
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n = 1):
self.val = val
self.sum += val*n
self.count += n
self.avg = self.sum / self.count
def save_checkpoint(state, epoch, filename='checkpoint.pth.tar'):
filename = "checkpoint_{}.pth.tar".format(epoch)
torch.save(state, os.path.join(save_path, filename))
def validate(val_loader, model, L1Loss, test_writer, output_writers, epoch):
#switch to evaluate mode
batch_time = AverageMeter()
losses = AverageMeter()
model.eval()
end = time.time()
for i, (mixture, background, reflection, gradient) in enumerate(val_loader):
input = [j.cuda() for j in mixture]
input = Variable(input[0], requires_grad = True)
background = [j.cuda() for j in background]
background = Variable(background[0], requires_grad = False)
reflection = [j.cuda() for j in reflection]
reflection = Variable(reflection[0], requires_grad = False)
gradient = [j.cuda() for j in gradient]
gradient = Variable(gradient[0], requires_grad = False)
output = model(input)
outputB = output[0]
loss = L1Loss(outputB, background)
losses.update(loss.data[0], background.size(0))
batch_time.update(time.time() - end)
end = time.time()
###show the estimated results on tensorboard
test_writer.add_scalar('evaluation_loss', loss.data[0], epoch)
if i < len(output_writers): # log first output of first batches
output_writers[i].add_image('TGroundTruth', input[0].data.cpu(), epoch)
output_writers[i].add_image('ToutputB', outputB[0].data.cpu(), epoch)
#output_writers[i].add_image('targetB', background[0].data.cpu(), epoch)
if __name__ == "__main__":
main()