forked from ajijohn/planet-snowcover
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPrepare_VEG-DEM.py
301 lines (247 loc) · 11.2 KB
/
Prepare_VEG-DEM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# Prepare VEG and DEM
# coding: utf-8
# In[1]:
#Ensure that below is set in the ve before you call
#get_ipython().system('export CURL_CA_BUNDLE=/etc/ssl/certs/ca-certificates.crt')
from osgeo import gdal
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import rasterio as rio
import numpy as np
from matplotlib import pyplot as plt
import rasterio.plot
import os
from datetime import datetime as dt
from rasterio import Affine, MemoryFile
from rasterio.enums import Resampling
import numpy
scale=1
# In[42]:
# Validate the see if the clips can be used.
#get_ipython().run_line_magic('matplotlib', 'inline')
from os import environ
import sys
import io
from os.path import expanduser
import pprint
import s3fs
import boto3
import io
from re import match
#get_ipython().run_line_magic('matplotlib', 'inline')
import rasterio as rio
import earthpy as et
import earthpy.spatial as es
import earthpy.plot as ep
import numpy as np
import numpy
#get_ipython().run_line_magic('matplotlib', 'inline')
import rasterio as rio
from matplotlib import pyplot as plt
import rasterio.plot
import os
from datetime import datetime as dt
from rasterio.io import MemoryFile
import tempfile
sys.path.append("../model/robosat_pink/")
from robosat_pink.config import load_config
config_location= '/home/ubuntu/planet-snowcover/experiments/co-train.toml'
config = load_config(config_location)
p = pprint.PrettyPrinter()
fs = s3fs.S3FileSystem(session = boto3.Session(profile_name = config['dataset']['aws_profile']))
imagery_searchpath = config['dataset']['image_bucket'] + '/' + config['dataset']['imagery_directory_regex']
print("Searching for imagery...({})".format(imagery_searchpath))
imagery_candidates = fs.ls(config['dataset']['image_bucket'])
#print("candidates:")
#p.pprint(imagery_candidates)
imagery_locs = [c for c in imagery_candidates if match(imagery_searchpath, c)]
print("result:")
p.pprint(imagery_locs)
# In[4]:
#get_ipython().system('export CURL_CA_BUNDLE=/etc/ssl/certs/ca-certificates.crt')
# In[ ]:
#Revised
#Now we got main root clips
#Now check that for each image, you can get the DEM clipped
import pandas as pd
import pyproj
from geopandas import GeoDataFrame
from shapely.geometry import shape,box
from rasterio.mask import mask
from rasterio.transform import from_origin
scale=1
#create the files with 5 babds
for link in imagery_locs:
print(link)
#sub_candidates = fs.ls(link)
#print(sub_candidates)
#dev_s3_client.list_objects(link)
s3 = boto3.resource('s3')
s3_client = boto3.client('s3')
bucket=link.partition('/')[0]
my_bucket = s3.Bucket(bucket)
for my_bucket_object in my_bucket.objects.filter(Prefix=link.partition('/')[2]):
#print(my_bucket_object)
print('{0}:{1}'.format(my_bucket.name, my_bucket_object.key))
with rio.open('s3://{0}/{1}'.format(my_bucket.name, my_bucket_object.key)) as src:
print("key",my_bucket_object.key)
print(src.meta)
# # Load red and NIR bands - note all PlanetScope 4-band images have band order BGRN
planet_ndvi = es.normalized_diff(src.read(3), src.read(4))
aug_pla_meta = src.profile
# Change the count or number of bands from 4 to 5
aug_pla_meta['count'] = 5
# Change the data type to float rather than integer
aug_pla_meta['dtype'] = "float64"
aug_pla_meta
#convert to float64
#ndvi_64 = np.array(planet_ndvi, dtype=numpy.float64)
t = src.transform
# rescale the metadata
transform = Affine(t.a * scale, t.b, t.c, t.d, t.e * scale, t.f)
height = int(src.height / scale)
width = int(src.width / scale)
#clip the dem
with rio.open('out.tiff') as origin:
epsg4326_dem = origin.read(1)
print('dem meta origin',origin.meta)
print('planet origin',src.meta)
#pf = src.read(1, masked=True)
print(box(*src.bounds))
try:
clipped_raster,clipped_transform = mask(origin,[box(*src.bounds)],crop=True,nodata= 0)
except ValueError as err:
print('Handling run-time error:', err)
print('clipped transform',clipped_transform)
clipped_meta = origin.meta.copy()
clipped_meta.update({"driver": "GTiff",
"height": clipped_raster.shape[1],
"width": clipped_raster.shape[2],
"nodata": 0,
"transform": clipped_transform})
print(src.meta,"ds")
print(clipped_raster[0].shape)
print(src.crs)
print(src.meta)
print(src.shape[1])
print(src.shape[0])
print("clipped")
print(clipped_raster.shape[1])
print(clipped_raster.shape[2])
# type
print(type(clipped_raster))
#old
with rio.open("dem.masked_dem" + ".tif", "w", **clipped_meta) as dest:
dest.write(clipped_raster)
localname='dem.masked_dem.tif'
#Second write is to do with resampling
with rasterio.open(localname) as nf:
print(nf.profile)
print(nf.crs)
print(nf.meta)
dem_r = nf.read(1) # read the entire array
clipped_meta = nf.meta.copy()
# Resample it here to match the same as Planet
#profile = origin.profile
clipped_meta.update(transform=transform, driver='GTiff', height=height, width=width)
clipped_raster = nf.read(
out_shape=(origin.count, height, width),
resampling=Resampling.bilinear,
)
with rio.open("dem.masked_dem2" + ".tif", "w", **clipped_meta) as dest:
dest.write(clipped_raster)
# below works , but a better way
#clip the veg
with rio.open('veg.tiff') as origin:
epsg4326_dem = origin.read(1)
print('dem meta origin',origin.meta)
print('planet origin',src.meta)
#pf = src.read(1, masked=True)
print(box(*src.bounds))
try:
clipped_raster,clipped_transform = mask(origin,[box(*src.bounds)],crop=True,nodata= 0)
except ValueError as err:
print('Handling run-time error:', err)
print('clipped transform',clipped_transform)
clipped_meta = origin.meta.copy()
clipped_meta.update({"driver": "GTiff",
"height": clipped_raster.shape[1],
"width": clipped_raster.shape[2],
"nodata": 0,
"transform": clipped_transform})
print(src.meta,"ds")
print(clipped_raster[0].shape)
print(src.crs)
print(src.meta)
print(src.shape[1])
print(src.shape[0])
print("clipped")
print(clipped_raster.shape[1])
print(clipped_raster.shape[2])
# type
print(type(clipped_raster))
#old
with rio.open("dem.masked1" + ".tif", "w", **clipped_meta) as dest:
dest.write(clipped_raster)
localname='dem.masked1.tif'
#Second write is to do with resampling
with rasterio.open(localname) as nf:
print(nf.profile)
print(nf.crs)
print(nf.meta)
dem_r = nf.read(1) # read the entire array
clipped_meta = nf.meta.copy()
# Resample it here to match the same as Planet
#profile = origin.profile
clipped_meta.update(transform=transform, driver='GTiff', height=height, width=width)
clipped_raster = nf.read(
out_shape=(origin.count, height, width),
resampling=Resampling.bilinear,
)
with rio.open("dem.masked2" + ".tif", "w", **clipped_meta) as dest:
dest.write(clipped_raster)
# below works , but a better way
#read in the clipped-resampled veg raster
localname='dem.masked2.tif'
with rasterio.open(localname) as nf:
print(nf.profile)
print(nf.crs)
print(nf.meta)
veg_r = nf.read(1) # read the entire array
# open the dem raster
localrastername='dem.masked_dem2.tif'
with rasterio.open(localrastername) as dfr:
dem_r = dfr.read(1) # read the entire array
#print(src.meta)
# # Load red and NIR bands - note all PlanetScope 4-band images have band order BGRN
aug_pla_meta = src.profile
# Change the count or number of bands from 4 to 6
aug_pla_meta['count'] = 6
# Change the data type to float rather than integer
aug_pla_meta['dtype'] = "float64"
aug_pla_meta
#convert to float64
veg_64 = np.array(veg_r, dtype=numpy.float64)
dem_64 = np.array(dem_r, dtype=numpy.float64)
ndvi_64 = np.array(planet_ndvi , dtype=numpy.float64)
# new path
new_bucket = s3.Bucket('planet-snowcover-imagery-veg-dem')
temp_file = tempfile.TemporaryFile()
#with tempfile.NamedTemporaryFile() as tmpfile:
#tmpfile.write(data)
#with rasterio.open(tmpfile.name) as dataset:
#data_array = dataset.read()
with tempfile.NamedTemporaryFile() as tmpfile:
with rasterio.open(tmpfile.name,
'w', **aug_pla_meta) as dstr:
dstr.write_band(1, src.read(1))
dstr.write_band(2, src.read(2))
dstr.write_band(3, src.read(3))
dstr.write_band(4, src.read(4))
dstr.write_band(5, veg_64)
dstr.write_band(6, dem_64)
dstr.close()
s3_client.upload_fileobj(tmpfile, new_bucket.name, my_bucket_object.key)
# Write band calculations to a new raster file
# break