forked from telesoho/faceblur
-
Notifications
You must be signed in to change notification settings - Fork 0
/
faceblur.py
84 lines (70 loc) · 2.9 KB
/
faceblur.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
'''
Recognize and blur all faces in photos.
'''
import os
import sys
import cv2
import face_recognition
def face_blur(src_img, dest_img, zoom_in=1):
'''
Recognize and blur all faces in the source image file, then save as destination image file.
'''
sys.stdout.write("%s:processing... \r" % (src_img))
sys.stdout.flush()
# Initialize some variables
face_locations = []
photo = face_recognition.load_image_file(src_img)
# Resize image to 1/zoom_in size for faster face detection processing
small_photo = cv2.resize(photo, (0, 0), fx=1/zoom_in, fy=1/zoom_in)
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(small_photo, model="cnn")
if face_locations:
print("%s:There are %s faces at " % (src_img, len(face_locations)), face_locations)
else:
print('%s:There are no any face.' % (src_img))
cv2.imwrite(dest_img, cv2.imread(src_img))
return False
#Blur all face
photo = cv2.imread(src_img)
for top, right, bottom, left in face_locations:
# Scale back up face locations since the frame we detected in was scaled to 1/zoom_in size
top *= zoom_in
right *= zoom_in
bottom *= zoom_in
left *= zoom_in
# Extract the region of the image that contains the face
face_image = photo[top:bottom, left:right]
# Blur the face image
face_image = cv2.GaussianBlur(face_image, (31, 31), 0)
# Put the blurred face region back into the frame image
photo[top:bottom, left:right] = face_image
#Save image to file
cv2.imwrite(dest_img, photo)
print('Face blurred photo has been save in %s' % dest_img)
return True
def blur_all_photo(src_dir, dest_dir):
'''
Blur all faces in the source directory photos and copy them to destination directory
'''
src_dir = os.path.abspath(src_dir)
dest_dir = os.path.abspath(dest_dir)
print('Search and blur human faces in %s''s photo.' % src_dir)
for root, subdirs, files in os.walk(src_dir):
root_relpath = os.path.relpath(root, src_dir)
new_root_path = os.path.realpath(os.path.join(dest_dir, root_relpath))
os.makedirs(new_root_path, exist_ok=True)
for filename in files:
ext = os.path.splitext(filename)[1]
if ext == '.jpg':
srcfile_path = os.path.join(root, filename)
destfile_path = os.path.join(new_root_path, os.path.basename(filename))
face_blur(srcfile_path, destfile_path)
if __name__ == '__main__':
if len(sys.argv) < 2:
print('faceblur v1.0.0 (c) telesoho.com')
print('Usage:python faceblur <src-image/src-directory> <dest-image/dest-directory>')
else:
if os.path.isfile(sys.argv[1]):
face_blur(sys.argv[1], sys.argv[2])
else:
blur_all_photo(sys.argv[1], sys.argv[2])