-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path01.introduction.tex
229 lines (190 loc) · 10.5 KB
/
01.introduction.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
\begin{frame} %=================================================================
\frametitle{Introduction Contents}
\begin{block}{}
\begin{wideitemize}
\item What / how / why
\end{wideitemize}
\end{block}
\end{frame} %-------------------------------------------------------------------
\note{}
%###############################################################################
%###############################################################################
%###############################################################################
%###############################################################################
\begin{frame} %=================================================================
\frametitle{What?}
\begin{center}
\textit{Robust Decentralized Control of Cooperative Multi-robot Systems}\\[4ex]
\end{center}
\begin{block}{}
\begin{wideitemize}
\item \textit{Simultaneous} control of \textit{multiple} systems
\item Decentralized: \textit{no} central control authority
\item Robust: uncertainty \textit{is} present
\item Cooperative: an agent-binding, resource-sharing task
\end{wideitemize}
\end{block}
\end{frame} %-------------------------------------------------------------------
\note{So, what is it that I will be to you talking about? Let's break it down:
1. First of all we are interested in controlling multiple systems, that operate
in the same space, at the same time\dots
2. \dots these systems do not obey the commands of a central, shared control
authority, but decide their actions on their own \dots
3. \dots under the presence of a disturbance of some sort
4. Lastly, these systems are somehow binded in a shared activity}
%###############################################################################
%###############################################################################
%###############################################################################
%###############################################################################
\begin{frame} %=================================================================
\frametitle{Cooperation realizations (1/2)}
\begin{figure}[H]
\includegraphics[scale=0.25]{figures/darpa_relay.png}
\caption{Controller$-$Relay$-$End effector (Goals-setter $-$ autonomous agents)}
\label{im:darpa_relay_1}
\end{figure}
Sources: \url{http://bit.ly/2pTljEf},\ \ \url{http://bit.ly/2qt1kOW}
\end{frame} %-------------------------------------------------------------------
\note{For instance, DARPA is interested in controlling swarms of drones whose
members may need to act as relays of information, due to the fact that
communication ranges are not limitless.}
%###############################################################################
%###############################################################################
%###############################################################################
%###############################################################################
\begin{frame} %=================================================================
\frametitle{Cooperation realizations (2/2)}
\begin{minipage}{0.45\textwidth}
\begin{figure}[H]
\includegraphics[scale=0.25]{figures/darpa_relay.png}
\caption{Controller$-$Relay$-$End effector (Goals-setter $-$ autonomous agents)}
\label{im:darpa_relay_2}
\end{figure}
\end{minipage} \hfill
\begin{minipage}{0.4\textwidth}
Prerequisites-tier:
\begin{itemize}
\item Connectivity maintenance
\item Collision avoidance (agents plus obstacles)
\end{itemize}
\end{minipage}
\end{frame} %-------------------------------------------------------------------
\note{In any case, we find that there are two fundamental prerequisites of
cooperation in decentralized settings: an arbitrary agent needs to maintain
connectivity with a set of agents, and avoid colliding with them, and any
obstacle that it may come across.
In this context, there are two interesting areas of control:}
%###############################################################################
%###############################################################################
%###############################################################################
%###############################################################################
\begin{frame} %=================================================================
\frametitle{Control in what sense? (1/2)}
Reference tracking
\begin{figure}[H]\centering
\includegraphics[scale=0.3]{figures/tcars.png}
\caption{Vehicles tracking a desired trajectory in tandem.}
\label{im:tracking_mention}
\end{figure}
\end{frame} %-------------------------------------------------------------------
\note{ The first is trajectory tracking, where either an agent all the whole
multi-agent system needs to follow a given trajectory as close as possible,
and stabilization\dots}
%###############################################################################
%###############################################################################
%###############################################################################
%###############################################################################
\begin{frame} %=================================================================
\frametitle{Control in what sense? (2/2)}
Stabilization\\[2ex]
\begin{minipage}{0.45\textwidth}
\begin{tikzpicture}[remember picture]
%\node[anchor=south west, inner sep=0pt] at (current page.south west) {%
\node[anchor=south west, inner sep=0pt] at (1.5,-3) {%
\movie[height = 0.5\paperheight, width = 0.72\paperwidth, poster, showcontrols, autostart,loop] {}{figures/tank_stable.mp4}%
};
\end{tikzpicture}
\end{minipage}
source: \url{http://www.popularmechanics.com/military/weapons/a18362/tank-carry-beer/}
\end{frame} %-------------------------------------------------------------------
\note{where for instance each agent is assigned a desired configuration to which
he must arrive at some point and stay, regardless of disturbances affecting
his dynamic behaviour. I found this video of stabilization on the internet
to be quite impressive.
And this is what the goal of this thesis is: to stabilize a multi-agent
system subject to disturbances to predefined configurations for all
agents. More or less we are interested in achieving this:}
%###############################################################################
%###############################################################################
%###############################################################################
%###############################################################################
\begin{frame} %=================================================================
\frametitle{In particular: stabilization}
\begin{tikzpicture}[remember picture,overlay]
%\node[anchor=south west, inner sep=0pt] at (current page.south west) {%
\node[anchor=south west, inner sep=0pt] at (1.5,-3) {%
\movie[height = 0.5\paperheight, width = 0.72\paperwidth, poster, showcontrols, autostart,loop] {}{figures/trajectories_only_loss.avi}%
%\movie[height = 0.5\paperheight, width = 0.72\paperwidth, poster, showcontrols, loop] {}{figures/trajectories_only_lossless.avi}%
};
\end{tikzpicture}
\end{frame} %-------------------------------------------------------------------
\note{What we see here are three agents that have to somehow bypass two obstacles
1. without the blue agent losing connectivity with the other two, and
2. without all of them crashing into agents or obstacles
prior to stabilizing themselves in some chosen configuration.}
%###############################################################################
%###############################################################################
%###############################################################################
%###############################################################################
\begin{frame} %=================================================================
\frametitle{How?}
\begin{center}
\textit{an inter-constraint Receding Horizon approach}\\[4ex]
\end{center}
\begin{block}{}
\begin{wideitemize}
\item ordinary Receding Horizon / Model Predictive Control strategy
\item cooperating agents are \textit{inter-constrained}
\end{wideitemize}
\end{block}
\end{frame} %-------------------------------------------------------------------
\note{Now, how did we achieve this?
We used the control strategy of Receding Horizon (or Model Predictive) Control,
where the connectivity and collision avoidance mandates are incorporated
as constraints}
%###############################################################################
%###############################################################################
%###############################################################################
%###############################################################################
\begin{frame} %=================================================================
\frametitle{Why MPC?}
\begin{wideitemize}
\item direct incorporation of connectivity / collision constraints
\item direct incorporation of input / state constraints
\item theoretic guarantees of stability
\item effective in aspects other methods are not
\end{wideitemize}
\end{frame} %-------------------------------------------------------------------
\note{Why choose MPC over any other strategy?
MPC has the unique advantage that it can directly incorporate
1. the type of constraints we are interested in imposing
2. input / state constraints
a. we can procure theoretic guarantees of stability
b. it can be effective in aspects other methods are not}
%###############################################################################
%###############################################################################
%###############################################################################
%###############################################################################
\begin{frame} %=================================================================
\frametitle{Prior approaches}
\begin{wideitemize}
\item Navigation Functions
\item Cost-coupled Decentralized MPC
\end{wideitemize}
\end{frame} %-------------------------------------------------------------------
\note{For instance the same problem was approached using navigation functions,
but this way proved to be not as robust as MPC.
The superiority of MPC has been exploited previously, and some approaches
consider imposing the kinds of constraints we are interested in by
coupling systems through the cost functions that MPC uses, instead of
through their constraints.}