-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
89 lines (77 loc) · 3.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from segment_anything import SamAutomaticMaskGenerator, SamPredictor, sam_model_registry
import torch
import cv2
import argparse
import os
import json
import pickle
def prep_path(results_path, img_path):
temp_img_path = img_path
temp_array = []
while (os.path.split(temp_img_path)[1] != ''):
temp_path_split = os.path.split(temp_img_path)
temp_array.append(temp_path_split[1])
temp_img_path = temp_path_split[0]
temp_array.reverse()
temp_path = results_path
for i in range(len(temp_array) - 1):
temp_path = temp_path + "/" + temp_array[i]
if (not os.path.exists(temp_path)):
os.mkdir(temp_path)
return
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="")
parser.add_argument("--labels_file", required=True, type=str)
parser.add_argument("--labels_dir", required=False, default="./output", type=str)
parser.add_argument("--images_dir", required=False, type=str)
parser.add_argument("--img_type", required=False, default="png", type=str)
parser.add_argument("--model", help="vit_h or vit_l" ,required=False, default="vit_h", type=str)
parser.add_argument("--single_file_res", help="bool for saving all masks to single file, similar to labels_file", required=False, default=False, type=bool)
parser.add_argument("--output", required=False, help="name of output file, should end with .json", default="output_sa_masks.json", type=str)
args = parser.parse_args()
labels_file = args.labels_file
labels_dir = args.labels_dir
images_dir = args.images_dir
img_type = args.img_type
model_type = args.model
single_file = args.single_file_res
print("CUDA is available: ", torch.cuda.is_available())
sam = sam_model_registry[model_type](checkpoint=("/cluster/home/kbirgi/SA_BscThesis/models/" + ("sam_vit_h_4b8939.pth" if (model_type == "vit_h") else "sam_vit_l_0b3195.pth")))
if torch.cuda.is_available():
sam.to(device="cuda")
mask_generator = SamAutomaticMaskGenerator(sam)
#predictor = SamPredictor(sam)
f = open(labels_file, "r")
labels_dict = json.load(f)
f.close()
#chosen_cameras = ['001004', '016004']
#chosen_cameras = ['016004']
#chosen_cameras = ["001000", "001001", "001002", "001003", "001004", "001005", "001006", "016000", "016001", "016002", "016003", "016004", "016005", "016006"]
#chosen_cameras = ["001000", "001001", "001002", "001003", "001005", "001006"]
chosen_cameras = ["001000", "001001"]
for i,camera in enumerate(labels_dict):
if not (camera in chosen_cameras):
continue
camera_dict = labels_dict[camera]
for j,imageNr in enumerate(camera_dict):
print("Camera: " + str(i) + "/" + str(len(labels_dict)) + " | Image: " + str(j) + "/" + str(len(camera_dict)), flush=True)
img_dict = camera_dict[imageNr]['img']
img_path = images_dir + "/" + img_dict['file_name']
prep_path(labels_dir ,img_dict['file_name'])
# read the image for segment anything
image = cv2.imread(img_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
masks_dict = {}
#all masks mode
# im using pickle files cause of the deep nested numpy ndarrays created from segment anything in the object dicts
masks_path = labels_dir + "/" + str.replace(img_dict['file_name'], "." + img_type, ".pkl")
all_masks = mask_generator.generate(image)
masks_dict['all_masks'] = all_masks
#TODO: take samples from yolact
#multimask mode
#multi_masks =
if not single_file:
with open(masks_path, "wb") as f:
pickle.dump(masks_dict, f)
#np.savetext(masks_path, all_masks, )
print("OK!")