-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapter15.tex
712 lines (626 loc) · 24.9 KB
/
chapter15.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
\chapter{Spanning trees}
\index{spanning tree}
A \key{spanning tree} of a graph consists of
all nodes of the graph and some of the
edges of the graph so that there is a path
between any two nodes.
Like trees in general, spanning trees are
connected and acyclic.
Usually there are several ways to construct a spanning tree.
For example, consider the following graph:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1.5,2) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (6.5,2) {$4$};
\node[draw, circle] (5) at (3,1) {$5$};
\node[draw, circle] (6) at (5,1) {$6$};
\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5);
\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
\end{tikzpicture}
\end{center}
One spanning tree for the graph is as follows:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1.5,2) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (6.5,2) {$4$};
\node[draw, circle] (5) at (3,1) {$5$};
\node[draw, circle] (6) at (5,1) {$6$};
\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
\end{tikzpicture}
\end{center}
The weight of a spanning tree is the sum of its edge weights.
For example, the weight of the above spanning tree is
$3+5+9+3+2=22$.
\index{minimum spanning tree}
A \key{minimum spanning tree}
is a spanning tree whose weight is as small as possible.
The weight of a minimum spanning tree for the example graph
is 20, and such a tree can be constructed as follows:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1.5,2) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (6.5,2) {$4$};
\node[draw, circle] (5) at (3,1) {$5$};
\node[draw, circle] (6) at (5,1) {$6$};
\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
\end{tikzpicture}
\end{center}
\index{maximum spanning tree}
In a similar way, a \key{maximum spanning tree}
is a spanning tree whose weight is as large as possible.
The weight of a maximum spanning tree for the
example graph is 32:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1.5,2) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (6.5,2) {$4$};
\node[draw, circle] (5) at (3,1) {$5$};
\node[draw, circle] (6) at (5,1) {$6$};
\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5);
\end{tikzpicture}
\end{center}
Note that a graph may have several
minimum and maximum spanning trees,
so the trees are not unique.
It turns out that several greedy methods
can be used to construct minimum and maximum
spanning trees.
In this chapter, we discuss two algorithms
that process
the edges of the graph ordered by their weights.
We focus on finding minimum spanning trees,
but the same algorithms can find
maximum spanning trees by processing the edges in reverse order.
\section{Kruskal's algorithm}
\index{Kruskal's algorithm}
In \key{Kruskal's algorithm}\footnote{The algorithm was published in 1956
by J. B. Kruskal \cite{kru56}.}, the initial spanning tree
only contains the nodes of the graph
and does not contain any edges.
Then the algorithm goes through the edges
ordered by their weights, and always adds an edge
to the tree if it does not create a cycle.
The algorithm maintains the components
of the tree.
Initially, each node of the graph
belongs to a separate component.
Always when an edge is added to the tree,
two components are joined.
Finally, all nodes belong to the same component,
and a minimum spanning tree has been found.
\subsubsection{Example}
\begin{samepage}
Let us consider how Kruskal's algorithm processes the
following graph:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1.5,2) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (6.5,2) {$4$};
\node[draw, circle] (5) at (3,1) {$5$};
\node[draw, circle] (6) at (5,1) {$6$};
\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5);
\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
\end{tikzpicture}
\end{center}
\end{samepage}
\begin{samepage}
The first step of the algorithm is to sort the
edges in increasing order of their weights.
The result is the following list:
\begin{tabular}{ll}
\\
edge & weight \\
\hline
5--6 & 2 \\
1--2 & 3 \\
3--6 & 3 \\
1--5 & 5 \\
2--3 & 5 \\
2--5 & 6 \\
4--6 & 7 \\
3--4 & 9 \\
\\
\end{tabular}
\end{samepage}
After this, the algorithm goes through the list
and adds each edge to the tree if it joins
two separate components.
Initially, each node is in its own component:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1.5,2) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (6.5,2) {$4$};
\node[draw, circle] (5) at (3,1) {$5$};
\node[draw, circle] (6) at (5,1) {$6$};
%\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
%\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
%\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
%\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
%\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
%\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
%\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5);
%\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
\end{tikzpicture}
\end{center}
The first edge to be added to the tree is
the edge 5--6 that creates a component $\{5,6\}$
by joining the components $\{5\}$ and $\{6\}$:
\begin{center}
\begin{tikzpicture}
\node[draw, circle] (1) at (1.5,2) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (6.5,2) {$4$};
\node[draw, circle] (5) at (3,1) {$5$};
\node[draw, circle] (6) at (5,1) {$6$};
%\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
%\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
%\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
%\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
%\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
%\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5);
%\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
\end{tikzpicture}
\end{center}
After this, the edges 1--2, 3--6 and 1--5 are added in a similar way:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1.5,2) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (6.5,2) {$4$};
\node[draw, circle] (5) at (3,1) {$5$};
\node[draw, circle] (6) at (5,1) {$6$};
\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
%\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
%\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
%\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
%\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5);
\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
\end{tikzpicture}
\end{center}
After those steps, most components have been joined
and there are two components in the tree:
$\{1,2,3,5,6\}$ and $\{4\}$.
The next edge in the list is the edge 2--3,
but it will not be included in the tree, because
nodes 2 and 3 are already in the same component.
For the same reason, the edge 2--5 will not be included in the tree.
\begin{samepage}
Finally, the edge 4--6 will be included in the tree:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1.5,2) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (6.5,2) {$4$};
\node[draw, circle] (5) at (3,1) {$5$};
\node[draw, circle] (6) at (5,1) {$6$};
\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
%\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
%\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
%\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5);
\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
\end{tikzpicture}
\end{center}
\end{samepage}
After this, the algorithm will not add any
new edges, because the graph is connected
and there is a path between any two nodes.
The resulting graph is a minimum spanning tree
with weight $2+3+3+5+7=20$.
\subsubsection{Why does this work?}
It is a good question why Kruskal's algorithm works.
Why does the greedy strategy guarantee that we
will find a minimum spanning tree?
Let us see what happens if the minimum weight edge of
the graph is \emph{not} included in the spanning tree.
For example, suppose that a spanning tree
for the previous graph would not contain the
minimum weight edge 5--6.
We do not know the exact structure of such a spanning tree,
but in any case it has to contain some edges.
Assume that the tree would be as follows:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1.5,2) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (6.5,2) {$4$};
\node[draw, circle] (5) at (3,1) {$5$};
\node[draw, circle] (6) at (5,1) {$6$};
\path[draw,thick,-,dashed] (1) -- (2);
\path[draw,thick,-,dashed] (2) -- (5);
\path[draw,thick,-,dashed] (2) -- (3);
\path[draw,thick,-,dashed] (3) -- (4);
\path[draw,thick,-,dashed] (4) -- (6);
\end{tikzpicture}
\end{center}
However, it is not possible that the above tree
would be a minimum spanning tree for the graph.
The reason for this is that we can remove an edge
from the tree and replace it with the minimum weight edge 5--6.
This produces a spanning tree whose weight is
\emph{smaller}:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1.5,2) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (6.5,2) {$4$};
\node[draw, circle] (5) at (3,1) {$5$};
\node[draw, circle] (6) at (5,1) {$6$};
\path[draw,thick,-,dashed] (1) -- (2);
\path[draw,thick,-,dashed] (2) -- (5);
\path[draw,thick,-,dashed] (3) -- (4);
\path[draw,thick,-,dashed] (4) -- (6);
\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
\end{tikzpicture}
\end{center}
For this reason, it is always optimal
to include the minimum weight edge
in the tree to produce a minimum spanning tree.
Using a similar argument, we can show that it
is also optimal to add the next edge in weight order
to the tree, and so on.
Hence, Kruskal's algorithm works correctly and
always produces a minimum spanning tree.
\subsubsection{Implementation}
When implementing Kruskal's algorithm,
it is convenient to use
the edge list representation of the graph.
The first phase of the algorithm sorts the
edges in the list in $O(m \log m)$ time.
After this, the second phase of the algorithm
builds the minimum spanning tree as follows:
\begin{lstlisting}
for (...) {
if (!same(a,b)) unite(a,b);
}
\end{lstlisting}
The loop goes through the edges in the list
and always processes an edge $a$--$b$
where $a$ and $b$ are two nodes.
Two functions are needed:
the function \texttt{same} determines
if $a$ and $b$ are in the same component,
and the function \texttt{unite}
joins the components that contain $a$ and $b$.
The problem is how to efficiently implement
the functions \texttt{same} and \texttt{unite}.
One possibility is to implement the function
\texttt{same} as a graph traversal and check if
we can get from node $a$ to node $b$.
However, the time complexity of such a function
would be $O(n+m)$
and the resulting algorithm would be slow,
because the function \texttt{same} will be called for each edge in the graph.
We will solve the problem using a union-find structure
that implements both functions in $O(\log n)$ time.
Thus, the time complexity of Kruskal's algorithm
will be $O(m \log n)$ after sorting the edge list.
\section{Union-find structure}
\index{union-find structure}
A \key{union-find structure} maintains
a collection of sets.
The sets are disjoint, so no element
belongs to more than one set.
Two $O(\log n)$ time operations are supported:
the \texttt{unite} operation joins two sets,
and the \texttt{find} operation finds the representative
of the set that contains a given element\footnote{The structure presented here
was introduced in 1971 by J. D. Hopcroft and J. D. Ullman \cite{hop71}.
Later, in 1975, R. E. Tarjan studied a more sophisticated variant
of the structure \cite{tar75} that is discussed in many algorithm
textbooks nowadays.}.
\subsubsection{Structure}
In a union-find structure, one element in each set
is the representative of the set,
and there is a chain from any other element of the
set to the representative.
For example, assume that the sets are
$\{1,4,7\}$, $\{5\}$ and $\{2,3,6,8\}$:
\begin{center}
\begin{tikzpicture}
\node[draw, circle] (1) at (0,-1) {$1$};
\node[draw, circle] (2) at (7,0) {$2$};
\node[draw, circle] (3) at (7,-1.5) {$3$};
\node[draw, circle] (4) at (1,0) {$4$};
\node[draw, circle] (5) at (4,0) {$5$};
\node[draw, circle] (6) at (6,-2.5) {$6$};
\node[draw, circle] (7) at (2,-1) {$7$};
\node[draw, circle] (8) at (8,-2.5) {$8$};
\path[draw,thick,->] (1) -- (4);
\path[draw,thick,->] (7) -- (4);
\path[draw,thick,->] (3) -- (2);
\path[draw,thick,->] (6) -- (3);
\path[draw,thick,->] (8) -- (3);
\end{tikzpicture}
\end{center}
In this case the representatives
of the sets are 4, 5 and 2.
We can find the representative of any element
by following the chain that begins at the element.
For example, the element 2 is the representative
for the element 6, because
we follow the chain $6 \rightarrow 3 \rightarrow 2$.
Two elements belong to the same set exactly when
their representatives are the same.
Two sets can be joined by connecting the
representative of one set to the
representative of the other set.
For example, the sets
$\{1,4,7\}$ and $\{2,3,6,8\}$
can be joined as follows:
\begin{center}
\begin{tikzpicture}
\node[draw, circle] (1) at (2,-1) {$1$};
\node[draw, circle] (2) at (7,0) {$2$};
\node[draw, circle] (3) at (7,-1.5) {$3$};
\node[draw, circle] (4) at (3,0) {$4$};
\node[draw, circle] (6) at (6,-2.5) {$6$};
\node[draw, circle] (7) at (4,-1) {$7$};
\node[draw, circle] (8) at (8,-2.5) {$8$};
\path[draw,thick,->] (1) -- (4);
\path[draw,thick,->] (7) -- (4);
\path[draw,thick,->] (3) -- (2);
\path[draw,thick,->] (6) -- (3);
\path[draw,thick,->] (8) -- (3);
\path[draw,thick,->] (4) -- (2);
\end{tikzpicture}
\end{center}
The resulting set contains the elements
$\{1,2,3,4,6,7,8\}$.
From this on, the element 2 is the representative
for the entire set and the old representative 4
points to the element 2.
The efficiency of the union-find structure depends on
how the sets are joined.
It turns out that we can follow a simple strategy:
always connect the representative of the
\emph{smaller} set to the representative of the \emph{larger} set
(or if the sets are of equal size,
we can make an arbitrary choice).
Using this strategy, the length of any chain
will be $O(\log n)$, so we can
find the representative of any element
efficiently by following the corresponding chain.
\subsubsection{Implementation}
The union-find structure can be implemented
using arrays.
In the following implementation,
the array \texttt{link} contains for each element
the next element
in the chain or the element itself if it is
a representative,
and the array \texttt{size} indicates for each representative
the size of the corresponding set.
Initially, each element belongs to a separate set:
\begin{lstlisting}
for (int i = 1; i <= n; i++) link[i] = i;
for (int i = 1; i <= n; i++) size[i] = 1;
\end{lstlisting}
The function \texttt{find} returns
the representative for an element $x$.
The representative can be found by following
the chain that begins at $x$.
\begin{lstlisting}
int find(int x) {
while (x != link[x]) x = link[x];
return x;
}
\end{lstlisting}
The function \texttt{same} checks
whether elements $a$ and $b$ belong to the same set.
This can easily be done by using the
function \texttt{find}:
\begin{lstlisting}
bool same(int a, int b) {
return find(a) == find(b);
}
\end{lstlisting}
\begin{samepage}
The function \texttt{unite} joins the sets
that contain elements $a$ and $b$
(the elements have to be in different sets).
The function first finds the representatives
of the sets and then connects the smaller
set to the larger set.
\begin{lstlisting}
void unite(int a, int b) {
a = find(a);
b = find(b);
if (size[a] < size[b]) swap(a,b);
size[a] += size[b];
link[b] = a;
}
\end{lstlisting}
\end{samepage}
The time complexity of the function \texttt{find}
is $O(\log n)$ assuming that the length of each
chain is $O(\log n)$.
In this case, the functions \texttt{same} and \texttt{unite}
also work in $O(\log n)$ time.
The function \texttt{unite} makes sure that the
length of each chain is $O(\log n)$ by connecting
the smaller set to the larger set.
\section{Prim's algorithm}
\index{Prim's algorithm}
\key{Prim's algorithm}\footnote{The algorithm is
named after R. C. Prim who published it in 1957 \cite{pri57}.
However, the same algorithm was discovered already in 1930
by V. Jarník.} is an alternative method
for finding a minimum spanning tree.
The algorithm first adds an arbitrary node
to the tree.
After this, the algorithm always chooses
a minimum-weight edge that
adds a new node to the tree.
Finally, all nodes have been added to the tree
and a minimum spanning tree has been found.
Prim's algorithm resembles Dijkstra's algorithm.
The difference is that Dijkstra's algorithm always
selects an edge whose distance from the starting
node is minimum, but Prim's algorithm simply selects
the minimum weight edge that adds a new node to the tree.
\subsubsection{Example}
Let us consider how Prim's algorithm works
in the following graph:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1.5,2) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (6.5,2) {$4$};
\node[draw, circle] (5) at (3,1) {$5$};
\node[draw, circle] (6) at (5,1) {$6$};
\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5);
\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
%\path[draw=red,thick,-,line width=2pt] (5) -- (6);
\end{tikzpicture}
\end{center}
Initially, there are no edges between the nodes:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1.5,2) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (6.5,2) {$4$};
\node[draw, circle] (5) at (3,1) {$5$};
\node[draw, circle] (6) at (5,1) {$6$};
%\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
%\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
%\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
%\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
%\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
%\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
%\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5);
%\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
\end{tikzpicture}
\end{center}
An arbitrary node can be the starting node,
so let us choose node 1.
First, we add node 2 that is connected by
an edge of weight 3:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1.5,2) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (6.5,2) {$4$};
\node[draw, circle] (5) at (3,1) {$5$};
\node[draw, circle] (6) at (5,1) {$6$};
\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
%\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
%\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
%\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
%\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
%\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
%\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5);
%\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
\end{tikzpicture}
\end{center}
After this, there are two edges with weight 5,
so we can add either node 3 or node 5 to the tree.
Let us add node 3 first:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1.5,2) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (6.5,2) {$4$};
\node[draw, circle] (5) at (3,1) {$5$};
\node[draw, circle] (6) at (5,1) {$6$};
\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
%\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
%\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
%\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
%\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
%\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5);
%\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
\end{tikzpicture}
\end{center}
\begin{samepage}
The process continues until all nodes have been included in the tree:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1.5,2) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (6.5,2) {$4$};
\node[draw, circle] (5) at (3,1) {$5$};
\node[draw, circle] (6) at (5,1) {$6$};
\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
%\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
%\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
%\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5);
\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
\end{tikzpicture}
\end{center}
\end{samepage}
\subsubsection{Implementation}
Like Dijkstra's algorithm, Prim's algorithm can be
efficiently implemented using a priority queue.
The priority queue should contain all nodes
that can be connected to the current component using
a single edge, in increasing order of the weights
of the corresponding edges.
The time complexity of Prim's algorithm is
$O(n + m \log m)$ that equals the time complexity
of Dijkstra's algorithm.
In practice, Prim's and Kruskal's algorithms
are both efficient, and the choice of the algorithm
is a matter of taste.
Still, most competitive programmers use Kruskal's algorithm.