-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapter11.tex
764 lines (670 loc) · 22 KB
/
chapter11.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
\chapter{Basics of graphs}
Many programming problems can be solved by
modeling the problem as a graph problem
and using an appropriate graph algorithm.
A typical example of a graph is a network
of roads and cities in a country.
Sometimes, though, the graph is hidden
in the problem and it may be difficult to detect it.
This part of the book discusses graph algorithms,
especially focusing on topics that
are important in competitive programming.
In this chapter, we go through concepts
related to graphs,
and study different ways to represent graphs in algorithms.
\section{Graph terminology}
\index{graph}
\index{node}
\index{edge}
A \key{graph} consists of \key{nodes}
and \key{edges}. In this book,
the variable $n$ denotes the number of nodes
in a graph, and the variable $m$ denotes
the number of edges.
The nodes are numbered
using integers $1,2,\ldots,n$.
For example, the following graph consists of 5 nodes and 7 edges:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (4,3) {$2$};
\node[draw, circle] (3) at (1,1) {$3$};
\node[draw, circle] (4) at (4,1) {$4$};
\node[draw, circle] (5) at (6,2) {$5$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (1) -- (4);
\path[draw,thick,-] (3) -- (4);
\path[draw,thick,-] (2) -- (4);
\path[draw,thick,-] (2) -- (5);
\path[draw,thick,-] (4) -- (5);
\end{tikzpicture}
\end{center}
\index{path}
A \key{path} leads from node $a$ to node $b$
through edges of the graph.
The \key{length} of a path is the number of
edges in it.
For example, the above graph contains
a path $1 \rightarrow 3 \rightarrow 4 \rightarrow 5$
of length 3
from node 1 to node 5:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (4,3) {$2$};
\node[draw, circle] (3) at (1,1) {$3$};
\node[draw, circle] (4) at (4,1) {$4$};
\node[draw, circle] (5) at (6,2) {$5$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (1) -- (4);
\path[draw,thick,-] (3) -- (4);
\path[draw,thick,-] (2) -- (4);
\path[draw,thick,-] (2) -- (5);
\path[draw,thick,-] (4) -- (5);
\path[draw=red,thick,->,line width=2pt] (1) -- (3);
\path[draw=red,thick,->,line width=2pt] (3) -- (4);
\path[draw=red,thick,->,line width=2pt] (4) -- (5);
\end{tikzpicture}
\end{center}
\index{cycle}
A path is a \key{cycle} if the first and last
node is the same.
For example, the above graph contains
a cycle $1 \rightarrow 3 \rightarrow 4 \rightarrow 1$.
A path is \key{simple} if each node appears
at most once in the path.
%
% \begin{itemize}
% \item $1 \rightarrow 2 \rightarrow 5$ (length 2)
% \item $1 \rightarrow 4 \rightarrow 5$ (length 2)
% \item $1 \rightarrow 2 \rightarrow 4 \rightarrow 5$ (length 3)
% \item $1 \rightarrow 3 \rightarrow 4 \rightarrow 5$ (length 3)
% \item $1 \rightarrow 4 \rightarrow 2 \rightarrow 5$ (length 3)
% \item $1 \rightarrow 3 \rightarrow 4 \rightarrow 2 \rightarrow 5$ (length 4)
% \end{itemize}
\subsubsection{Connectivity}
\index{connected graph}
A graph is \key{connected} if there is a path
between any two nodes.
For example, the following graph is connected:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (4,3) {$2$};
\node[draw, circle] (3) at (1,1) {$3$};
\node[draw, circle] (4) at (4,1) {$4$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (2) -- (3);
\path[draw,thick,-] (3) -- (4);
\path[draw,thick,-] (2) -- (4);
\end{tikzpicture}
\end{center}
The following graph is not connected,
because it is not possible to get
from node 4 to any other node:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (4,3) {$2$};
\node[draw, circle] (3) at (1,1) {$3$};
\node[draw, circle] (4) at (4,1) {$4$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (2) -- (3);
\end{tikzpicture}
\end{center}
\index{component}
The connected parts of a graph are
called its \key{components}.
For example, the following graph
contains three components:
$\{1,\,2,\,3\}$,
$\{4,\,5,\,6,\,7\}$ and
$\{8\}$.
\begin{center}
\begin{tikzpicture}[scale=0.8]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (4,3) {$2$};
\node[draw, circle] (3) at (1,1) {$3$};
\node[draw, circle] (6) at (6,1) {$6$};
\node[draw, circle] (7) at (9,1) {$7$};
\node[draw, circle] (4) at (6,3) {$4$};
\node[draw, circle] (5) at (9,3) {$5$};
\node[draw, circle] (8) at (11,2) {$8$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (2) -- (3);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (4) -- (5);
\path[draw,thick,-] (5) -- (7);
\path[draw,thick,-] (6) -- (7);
\path[draw,thick,-] (6) -- (4);
\end{tikzpicture}
\end{center}
\index{tree}
A \key{tree} is a connected graph
that consists of $n$ nodes and $n-1$ edges.
There is a unique path
between any two nodes of a tree.
For example, the following graph is a tree:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (4,3) {$2$};
\node[draw, circle] (3) at (1,1) {$3$};
\node[draw, circle] (4) at (4,1) {$4$};
\node[draw, circle] (5) at (6,2) {$5$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
%\path[draw,thick,-] (1) -- (4);
\path[draw,thick,-] (2) -- (5);
\path[draw,thick,-] (2) -- (4);
%\path[draw,thick,-] (4) -- (5);
\end{tikzpicture}
\end{center}
\subsubsection{Edge directions}
\index{directed graph}
A graph is \key{directed}
if the edges can be traversed
in one direction only.
For example, the following graph is directed:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (4,3) {$2$};
\node[draw, circle] (3) at (1,1) {$3$};
\node[draw, circle] (4) at (4,1) {$4$};
\node[draw, circle] (5) at (6,2) {$5$};
\path[draw,thick,->,>=latex] (1) -- (2);
\path[draw,thick,->,>=latex] (2) -- (4);
\path[draw,thick,->,>=latex] (2) -- (5);
\path[draw,thick,->,>=latex] (4) -- (5);
\path[draw,thick,->,>=latex] (4) -- (1);
\path[draw,thick,->,>=latex] (3) -- (1);
\end{tikzpicture}
\end{center}
The above graph contains
a path $3 \rightarrow 1 \rightarrow 2 \rightarrow 5$
from node $3$ to node $5$,
but there is no path from node $5$ to node $3$.
\subsubsection{Edge weights}
\index{weighted graph}
In a \key{weighted} graph, each edge is assigned
a \key{weight}.
The weights are often interpreted as edge lengths.
For example, the following graph is weighted:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (4,3) {$2$};
\node[draw, circle] (3) at (1,1) {$3$};
\node[draw, circle] (4) at (4,1) {$4$};
\node[draw, circle] (5) at (6,2) {$5$};
\path[draw,thick,-] (1) -- node[font=\small,label=above:5] {} (2);
\path[draw,thick,-] (1) -- node[font=\small,label=left:1] {} (3);
\path[draw,thick,-] (3) -- node[font=\small,label=below:7] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=above:7] {} (5);
\path[draw,thick,-] (4) -- node[font=\small,label=below:3] {} (5);
\end{tikzpicture}
\end{center}
The length of a path in a weighted graph
is the sum of the edge weights on the path.
For example, in the above graph,
the length of the path
$1 \rightarrow 2 \rightarrow 5$ is $12$,
and the length of the path
$1 \rightarrow 3 \rightarrow 4 \rightarrow 5$ is $11$.
The latter path is the \key{shortest} path from node $1$ to node $5$.
\subsubsection{Neighbors and degrees}
\index{neighbor}
\index{degree}
Two nodes are \key{neighbors} or \key{adjacent}
if there is an edge between them.
The \key{degree} of a node
is the number of its neighbors.
For example, in the following graph,
the neighbors of node 2 are 1, 4 and 5,
so its degree is 3.
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (4,3) {$2$};
\node[draw, circle] (3) at (1,1) {$3$};
\node[draw, circle] (4) at (4,1) {$4$};
\node[draw, circle] (5) at (6,2) {$5$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (1) -- (4);
\path[draw,thick,-] (3) -- (4);
\path[draw,thick,-] (2) -- (4);
\path[draw,thick,-] (2) -- (5);
%\path[draw,thick,-] (4) -- (5);
\end{tikzpicture}
\end{center}
The sum of degrees in a graph is always $2m$,
where $m$ is the number of edges,
because each edge
increases the degree of exactly two nodes by one.
For this reason, the sum of degrees is always even.
\index{regular graph}
\index{complete graph}
A graph is \key{regular} if the
degree of every node is a constant $d$.
A graph is \key{complete} if the
degree of every node is $n-1$, i.e.,
the graph contains all possible edges
between the nodes.
\index{indegree}
\index{outdegree}
In a directed graph, the \key{indegree}
of a node is the number of edges
that end at the node,
and the \key{outdegree} of a node
is the number of edges that start at the node.
For example, in the following graph,
the indegree of node 2 is 2,
and the outdegree of node 2 is 1.
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (4,3) {$2$};
\node[draw, circle] (3) at (1,1) {$3$};
\node[draw, circle] (4) at (4,1) {$4$};
\node[draw, circle] (5) at (6,2) {$5$};
\path[draw,thick,->,>=latex] (1) -- (2);
\path[draw,thick,->,>=latex] (1) -- (3);
\path[draw,thick,->,>=latex] (1) -- (4);
\path[draw,thick,->,>=latex] (3) -- (4);
\path[draw,thick,->,>=latex] (2) -- (4);
\path[draw,thick,<-,>=latex] (2) -- (5);
\end{tikzpicture}
\end{center}
\subsubsection{Colorings}
\index{coloring}
\index{bipartite graph}
In a \key{coloring} of a graph,
each node is assigned a color so that
no adjacent nodes have the same color.
A graph is \key{bipartite} if
it is possible to color it using two colors.
It turns out that a graph is bipartite
exactly when it does not contain a cycle
with an odd number of edges.
For example, the graph
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$2$};
\node[draw, circle] (2) at (4,3) {$3$};
\node[draw, circle] (3) at (1,1) {$5$};
\node[draw, circle] (4) at (4,1) {$6$};
\node[draw, circle] (5) at (-2,1) {$4$};
\node[draw, circle] (6) at (-2,3) {$1$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (3) -- (4);
\path[draw,thick,-] (2) -- (4);
\path[draw,thick,-] (3) -- (6);
\path[draw,thick,-] (5) -- (6);
\end{tikzpicture}
\end{center}
is bipartite, because it can be colored as follows:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle, fill=blue!40] (1) at (1,3) {$2$};
\node[draw, circle, fill=red!40] (2) at (4,3) {$3$};
\node[draw, circle, fill=red!40] (3) at (1,1) {$5$};
\node[draw, circle, fill=blue!40] (4) at (4,1) {$6$};
\node[draw, circle, fill=red!40] (5) at (-2,1) {$4$};
\node[draw, circle, fill=blue!40] (6) at (-2,3) {$1$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (3) -- (4);
\path[draw,thick,-] (2) -- (4);
\path[draw,thick,-] (3) -- (6);
\path[draw,thick,-] (5) -- (6);
\end{tikzpicture}
\end{center}
However, the graph
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$2$};
\node[draw, circle] (2) at (4,3) {$3$};
\node[draw, circle] (3) at (1,1) {$5$};
\node[draw, circle] (4) at (4,1) {$6$};
\node[draw, circle] (5) at (-2,1) {$4$};
\node[draw, circle] (6) at (-2,3) {$1$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (3) -- (4);
\path[draw,thick,-] (2) -- (4);
\path[draw,thick,-] (3) -- (6);
\path[draw,thick,-] (5) -- (6);
\path[draw,thick,-] (1) -- (6);
\end{tikzpicture}
\end{center}
is not bipartite, because it is not possible to color
the following cycle of three nodes using two colors:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$2$};
\node[draw, circle] (2) at (4,3) {$3$};
\node[draw, circle] (3) at (1,1) {$5$};
\node[draw, circle] (4) at (4,1) {$6$};
\node[draw, circle] (5) at (-2,1) {$4$};
\node[draw, circle] (6) at (-2,3) {$1$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (3) -- (4);
\path[draw,thick,-] (2) -- (4);
\path[draw,thick,-] (3) -- (6);
\path[draw,thick,-] (5) -- (6);
\path[draw,thick,-] (1) -- (6);
\path[draw=red,thick,-,line width=2pt] (1) -- (3);
\path[draw=red,thick,-,line width=2pt] (3) -- (6);
\path[draw=red,thick,-,line width=2pt] (6) -- (1);
\end{tikzpicture}
\end{center}
\subsubsection{Simplicity}
\index{simple graph}
A graph is \key{simple}
if no edge starts and ends at the same node,
and there are no multiple
edges between two nodes.
Often we assume that graphs are simple.
For example, the following graph is \emph{not} simple:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$2$};
\node[draw, circle] (2) at (4,3) {$3$};
\node[draw, circle] (3) at (1,1) {$5$};
\node[draw, circle] (4) at (4,1) {$6$};
\node[draw, circle] (5) at (-2,1) {$4$};
\node[draw, circle] (6) at (-2,3) {$1$};
\path[draw,thick,-] (1) edge [bend right=20] (2);
\path[draw,thick,-] (2) edge [bend right=20] (1);
%\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (3) -- (4);
\path[draw,thick,-] (2) -- (4);
\path[draw,thick,-] (3) -- (6);
\path[draw,thick,-] (5) -- (6);
\tikzset{every loop/.style={in=135,out=190}}
\path[draw,thick,-] (5) edge [loop left] (5);
\end{tikzpicture}
\end{center}
\section{Graph representation}
There are several ways to represent graphs
in algorithms.
The choice of a data structure
depends on the size of the graph and
the way the algorithm processes it.
Next we will go through three common representations.
\subsubsection{Adjacency list representation}
\index{adjacency list}
In the adjacency list representation,
each node $x$ in the graph is assigned an \key{adjacency list}
that consists of nodes
to which there is an edge from $x$.
Adjacency lists are the most popular
way to represent graphs, and most algorithms can be
efficiently implemented using them.
A convenient way to store the adjacency lists is to declare
an array of vectors as follows:
\begin{lstlisting}
vector<int> adj[N];
\end{lstlisting}
The constant $N$ is chosen so that all
adjacency lists can be stored.
For example, the graph
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (3,1) {$4$};
\path[draw,thick,->,>=latex] (1) -- (2);
\path[draw,thick,->,>=latex] (2) -- (3);
\path[draw,thick,->,>=latex] (2) -- (4);
\path[draw,thick,->,>=latex] (3) -- (4);
\path[draw,thick,->,>=latex] (4) -- (1);
\end{tikzpicture}
\end{center}
can be stored as follows:
\begin{lstlisting}
adj[1].push_back(2);
adj[2].push_back(3);
adj[2].push_back(4);
adj[3].push_back(4);
adj[4].push_back(1);
\end{lstlisting}
If the graph is undirected, it can be stored in a similar way,
but each edge is added in both directions.
For a weighted graph, the structure can be extended
as follows:
\begin{lstlisting}
vector<pair<int,int>> adj[N];
\end{lstlisting}
In this case, the adjacency list of node $a$
contains the pair $(b,w)$
always when there is an edge from node $a$ to node $b$
with weight $w$. For example, the graph
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (3,1) {$4$};
\path[draw,thick,->,>=latex] (1) -- node[font=\small,label=above:5] {} (2);
\path[draw,thick,->,>=latex] (2) -- node[font=\small,label=above:7] {} (3);
\path[draw,thick,->,>=latex] (2) -- node[font=\small,label=left:6] {} (4);
\path[draw,thick,->,>=latex] (3) -- node[font=\small,label=right:5] {} (4);
\path[draw,thick,->,>=latex] (4) -- node[font=\small,label=left:2] {} (1);
\end{tikzpicture}
\end{center}
can be stored as follows:
\begin{lstlisting}
adj[1].push_back({2,5});
adj[2].push_back({3,7});
adj[2].push_back({4,6});
adj[3].push_back({4,5});
adj[4].push_back({1,2});
\end{lstlisting}
The benefit of using adjacency lists is that
we can efficiently find the nodes to which
we can move from a given node through an edge.
For example, the following loop goes through all nodes
to which we can move from node $s$:
\begin{lstlisting}
for (auto u : adj[s]) {
// process node u
}
\end{lstlisting}
\subsubsection{Adjacency matrix representation}
\index{adjacency matrix}
An \key{adjacency matrix} is a two-dimensional array
that indicates which edges the graph contains.
We can efficiently check from an adjacency matrix
if there is an edge between two nodes.
The matrix can be stored as an array
\begin{lstlisting}
int adj[N][N];
\end{lstlisting}
where each value $\texttt{adj}[a][b]$ indicates
whether the graph contains an edge from
node $a$ to node $b$.
If the edge is included in the graph,
then $\texttt{adj}[a][b]=1$,
and otherwise $\texttt{adj}[a][b]=0$.
For example, the graph
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (3,1) {$4$};
\path[draw,thick,->,>=latex] (1) -- (2);
\path[draw,thick,->,>=latex] (2) -- (3);
\path[draw,thick,->,>=latex] (2) -- (4);
\path[draw,thick,->,>=latex] (3) -- (4);
\path[draw,thick,->,>=latex] (4) -- (1);
\end{tikzpicture}
\end{center}
can be represented as follows:
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0) grid (4,4);
\node at (0.5,0.5) {1};
\node at (1.5,0.5) {0};
\node at (2.5,0.5) {0};
\node at (3.5,0.5) {0};
\node at (0.5,1.5) {0};
\node at (1.5,1.5) {0};
\node at (2.5,1.5) {0};
\node at (3.5,1.5) {1};
\node at (0.5,2.5) {0};
\node at (1.5,2.5) {0};
\node at (2.5,2.5) {1};
\node at (3.5,2.5) {1};
\node at (0.5,3.5) {0};
\node at (1.5,3.5) {1};
\node at (2.5,3.5) {0};
\node at (3.5,3.5) {0};
\node at (-0.5,0.5) {4};
\node at (-0.5,1.5) {3};
\node at (-0.5,2.5) {2};
\node at (-0.5,3.5) {1};
\node at (0.5,4.5) {1};
\node at (1.5,4.5) {2};
\node at (2.5,4.5) {3};
\node at (3.5,4.5) {4};
\end{tikzpicture}
\end{center}
If the graph is weighted, the adjacency matrix
representation can be extended so that
the matrix contains the weight of the edge
if the edge exists.
Using this representation, the graph
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (3,1) {$4$};
\path[draw,thick,->,>=latex] (1) -- node[font=\small,label=above:5] {} (2);
\path[draw,thick,->,>=latex] (2) -- node[font=\small,label=above:7] {} (3);
\path[draw,thick,->,>=latex] (2) -- node[font=\small,label=left:6] {} (4);
\path[draw,thick,->,>=latex] (3) -- node[font=\small,label=right:5] {} (4);
\path[draw,thick,->,>=latex] (4) -- node[font=\small,label=left:2] {} (1);
\end{tikzpicture}
\end{center}
\begin{samepage}
corresponds to the following matrix:
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0) grid (4,4);
\node at (0.5,0.5) {2};
\node at (1.5,0.5) {0};
\node at (2.5,0.5) {0};
\node at (3.5,0.5) {0};
\node at (0.5,1.5) {0};
\node at (1.5,1.5) {0};
\node at (2.5,1.5) {0};
\node at (3.5,1.5) {5};
\node at (0.5,2.5) {0};
\node at (1.5,2.5) {0};
\node at (2.5,2.5) {7};
\node at (3.5,2.5) {6};
\node at (0.5,3.5) {0};
\node at (1.5,3.5) {5};
\node at (2.5,3.5) {0};
\node at (3.5,3.5) {0};
\node at (-0.5,0.5) {4};
\node at (-0.5,1.5) {3};
\node at (-0.5,2.5) {2};
\node at (-0.5,3.5) {1};
\node at (0.5,4.5) {1};
\node at (1.5,4.5) {2};
\node at (2.5,4.5) {3};
\node at (3.5,4.5) {4};
\end{tikzpicture}
\end{center}
\end{samepage}
The drawback of the adjacency matrix representation
is that the matrix contains $n^2$ elements,
and usually most of them are zero.
For this reason, the representation cannot be used
if the graph is large.
\subsubsection{Edge list representation}
\index{edge list}
An \key{edge list} contains all edges of a graph
in some order.
This is a convenient way to represent a graph
if the algorithm processes all edges of the graph
and it is not needed to find edges that start
at a given node.
The edge list can be stored in a vector
\begin{lstlisting}
vector<pair<int,int>> edges;
\end{lstlisting}
where each pair $(a,b)$ denotes that
there is an edge from node $a$ to node $b$.
Thus, the graph
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (3,1) {$4$};
\path[draw,thick,->,>=latex] (1) -- (2);
\path[draw,thick,->,>=latex] (2) -- (3);
\path[draw,thick,->,>=latex] (2) -- (4);
\path[draw,thick,->,>=latex] (3) -- (4);
\path[draw,thick,->,>=latex] (4) -- (1);
\end{tikzpicture}
\end{center}
can be represented as follows:
\begin{lstlisting}
edges.push_back({1,2});
edges.push_back({2,3});
edges.push_back({2,4});
edges.push_back({3,4});
edges.push_back({4,1});
\end{lstlisting}
\noindent
If the graph is weighted, the structure can
be extended as follows:
\begin{lstlisting}
vector<tuple<int,int,int>> edges;
\end{lstlisting}
Each element in this list is of the
form $(a,b,w)$, which means that there
is an edge from node $a$ to node $b$ with weight $w$.
For example, the graph
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (3,1) {$4$};
\path[draw,thick,->,>=latex] (1) -- node[font=\small,label=above:5] {} (2);
\path[draw,thick,->,>=latex] (2) -- node[font=\small,label=above:7] {} (3);
\path[draw,thick,->,>=latex] (2) -- node[font=\small,label=left:6] {} (4);
\path[draw,thick,->,>=latex] (3) -- node[font=\small,label=right:5] {} (4);
\path[draw,thick,->,>=latex] (4) -- node[font=\small,label=left:2] {} (1);
\end{tikzpicture}
\end{center}
\begin{samepage}
can be represented as follows\footnote{In some older compilers, the function
\texttt{make\_tuple} must be used instead of the braces (for example,
\texttt{make\_tuple(1,2,5)} instead of \texttt{\{1,2,5\}}).}:
\begin{lstlisting}
edges.push_back({1,2,5});
edges.push_back({2,3,7});
edges.push_back({2,4,6});
edges.push_back({3,4,5});
edges.push_back({4,1,2});
\end{lstlisting}
\end{samepage}