-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
75 lines (56 loc) · 1.91 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
"""
evaluate.py
A script for evaluating the quality of rendered images.
"""
import csv
from pathlib import Path
from tqdm import tqdm
from src.rgb_metrics import (
compute_lpips_between_directories,
compute_psnr_between_directories,
compute_ssim_between_directories,
)
def main() -> None:
# Directory containing rendered images
ref_root = Path("data/nerf_synthetic")
out_root = Path("outputs")
scene_types = ["chair", "lego", "materials", "drums"]
# Evaluate
metrics_list = []
lpips_avg = 0.0
psnr_avg = 0.0
ssim_avg = 0.0
for scene_type in tqdm(scene_types):
metrics = {}
ref_dir = ref_root / scene_type / "test"
out_dir = out_root / scene_type
assert ref_dir.exists(), f"Scene {scene_type} not found."
assert out_dir.exists(), f"Scene {scene_type} not found."
print(f"Evaluating scene: {scene_type}")
metrics["scene"] = scene_type
metrics["lpips"] = compute_lpips_between_directories(out_dir, ref_dir)
metrics["psnr"] = compute_psnr_between_directories(out_dir, ref_dir)
metrics["ssim"] = compute_ssim_between_directories(out_dir, ref_dir)
lpips_avg += metrics["lpips"]
psnr_avg += metrics["psnr"]
ssim_avg += metrics["ssim"]
metrics_list.append(metrics)
# Compute average
lpips_avg /= len(scene_types)
psnr_avg /= len(scene_types)
ssim_avg /= len(scene_types)
metrics_list.append({
"scene": "average",
"lpips": lpips_avg,
"psnr": psnr_avg,
"ssim": ssim_avg
})
# Save metrics to CSV
csv_file = "./metrics.csv"
with open(csv_file, mode='w', newline='') as file:
writer = csv.DictWriter(file, fieldnames=["scene", "lpips", "psnr", "ssim"])
writer.writeheader()
writer.writerows(metrics_list)
print(f"Metrics saved to {csv_file}")
if __name__ == "__main__":
main()