forked from CRPropa/CRPropa3-data
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalc_synchrotron.py
106 lines (87 loc) · 2.92 KB
/
calc_synchrotron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import os
import numpy as np
from scipy.special import kv
from scipy import integrate
import gitHelp as gh
def synchrotron_spectrum(xval):
"""
Calculate cumulative synchrotron spectrum.
Follows:
J.~D. Jackson, Classical Electrondynamics.
Wiley, 3rd ed., p. 681, eq. 14.91
F(x) = (\int_{x}^{\infinity} K_{5/3}(x') dx')
for x = E_gamma / E_critical, where E_critical = hbar * 3/2 * c/rho * (E/(mc**2))**2
E_gamma : Energy of synchrotron photon
E : Energy of particle
rho : gyroradius
Returns :
The cumulative synchrotron function
"""
F = np.zeros(len(xval))
for i, value in enumerate(xval):
a = xval[i:]
F[i] = integrate.trapz(x = a, y = kv(5. / 3., a))
for i,value in enumerate(xval):
b = integrate.cumtrapz(x = xval, y = xval * F, initial = 0)
return b / b[-1]
def compute_spectrum(x, outputName):
"""
Cumulative differential synchrotron spectrum.
This implementation follows:
J.~D. Jackson, Classical Electrondynamics.
Wiley, 3rd ed., p. 681, eq. 14.91
Input
x: fraction between photon frequency and critical frequency
outputName: name of output file
"""
cdf = synchrotron_spectrum(x)
lx = np.log10(x)
data = np.c_[lx, cdf]
# Add git hash of crpropa-data repository to header
try:
git_hash = gh.get_git_revision_hash()
header = 'Produced with crpropa-data version: '+git_hash+'\nx\t: photon frequency to critical frequency fraction\nlog10(x)\tCDF\n'
except:
header = 'x\t: photon frequency to critical frequency fraction\nlog10(x)\tCDF\n'
fmt = '%3.2f\t%7.6e'
np.savetxt(outputName, data, fmt = fmt, header = header)
def plot(specFile, plotFile):
"""
Make simple plot for sanity checks.
Input
specFile: file containing the synchrotron spectrum
plotFile: file to save the plotted figure
"""
data = np.loadtxt(specFile)
x = 10 ** data[:, 0]
y = data[:, 1]
y = np.diff(y) / np.diff(x)
x = 10 ** ((np.log10(x[:-1]) + np.diff(np.log10(x))) / 2.)
# y = np.diff(y) / np.diff(data[])
import matplotlib.pyplot as plt
plt.figure()
plt.plot(x, y)
plt.loglog()
plt.grid()
plt.xlim(1e-7, 1e5)
plt.ylim(1e-6, 10.)
plt.xlabel('$x \\equiv \\nu / \\nu_c$')
plt.ylabel('$f(x)$')
plt.savefig(plotFile)
def process():
x = np.logspace(-10., 4, 1401)
plotDir = 'plots'
resDir = 'data/Synchrotron'
if not os.path.exists(plotDir):
os.makedirs(plotDir)
if not os.path.exists(resDir):
os.makedirs(resDir)
outputName = '%s/spectrum.txt' % resDir
compute_spectrum(x, outputName)
plotName = '%s/sync.png' % plotDir
plot(outputName, plotName)
# ----------------------------------------------------------------
# main
# ----------------------------------------------------------------
if __name__ == '__main__':
process()