diff --git a/Project.toml b/Project.toml new file mode 100644 index 0000000..b6529f6 --- /dev/null +++ b/Project.toml @@ -0,0 +1,23 @@ +name = "ControlToolbox" +uuid = "059e8e86-8a00-5752-9d3d-adbce60f63dd" +authors = ["Arda Aytekin , Niklas Everitt "] + +[deps] +Compat = "34da2185-b29b-5c13-b0c7-acf172513d20" +LTISystems = "67f030dc-aa52-5f83-ac42-e4024659685c" +MathProgBase = "fdba3010-5040-5b88-9595-932c9decdf73" +Optim = "429524aa-4258-5aef-a3af-852621145aeb" + +[compat] +Compat = "≥ 0.17.0" +LTISystems = "≥ 0.1.0" +MathProgBase = "≥ 0.6.0" +NLopt = "≥ 0.3.5" +Optim = "≥ 0.7.8" +julia = "≥ 0.5.0" + +[extras] +NLopt = "76087f3c-5699-56af-9a33-bf431cd00edd" + +[targets] +test = ["NLopt"] diff --git a/src/ControlToolbox.jl b/src/ControlToolbox.jl index 959b9bb..3a0da3e 100644 --- a/src/ControlToolbox.jl +++ b/src/ControlToolbox.jl @@ -1,15 +1,18 @@ module ControlToolbox using Compat +using LinearAlgebra using Optim using Polynomials +using Printf using RationalFunctions using RecipesBase using LTISystems -import Base: step, norm -import Base.LinAlg: BlasFloat -import Base: start, next, done +import Base: step +#import Base: BlasFloat +import Base: iterate +import LinearAlgebra: norm import LTISystems: LtiSystem, StateSpace, TransferFunction, SystemResponse import MathProgBase: eval_grad_f, eval_f, eval_g, features_available, initialize diff --git a/src/analysis/damp.jl b/src/analysis/damp.jl index 2aa8d74..d1e565e 100644 --- a/src/analysis/damp.jl +++ b/src/analysis/damp.jl @@ -4,7 +4,7 @@ Compute the natural frequencies, `Wn`, and damping ratios, `zeta`, of the poles, `ps`, of `sys` """ -function damp{T,S}(sys::LtiSystem{T,S}) +function damp(sys::LtiSystem{T,S}) where {T,S} ps = poles(sys) if isdiscrete(sys) #Ts = sys.Ts == -1 ? 1 : sys.Ts @@ -26,7 +26,7 @@ constant of the system `sys` """ function dampreport(io::IO, sys::LtiSystem) Wn, zeta, ps = damp(sys) - t_const = 1./(Wn.*zeta) + t_const = 1 ./(Wn.*zeta) header = ("| Pole | Damping | Frequency | Time Constant |\n"* "| | Ratio | (rad/sec) | (sec) |\n"* diff --git a/src/analysis/isstable.jl b/src/analysis/isstable.jl index 62643a0..ba69f85 100644 --- a/src/analysis/isstable.jl +++ b/src/analysis/isstable.jl @@ -1,7 +1,7 @@ -isstable{S}(s::StateSpace{S,Val{:disc}}) = maximum(abs(poles(s))) < 1 +isstable(s::StateSpace{S,Val{:disc}}) where {S} = maximum(abs(poles(s))) < 1 -isstable{S}(s::StateSpace{S,Val{:cont}}) = maximum(real(poles(s))) < 0 +isstable(s::StateSpace{S,Val{:cont}}) where {S} = maximum(real(poles(s))) < 0 #isstable(s::LtiSystem{Val{:mimo}}) = map(isstable, getmatrix(s)) diff --git a/src/analysis/margins.jl b/src/analysis/margins.jl index e484dca..1084368 100644 --- a/src/analysis/margins.jl +++ b/src/analysis/margins.jl @@ -64,7 +64,7 @@ gainmargin(sys::LtiSystem, dB::Bool=false) = gainmargin(tf(sys), dB=dB) # Compute the real and imaginary parts of a polynomial assuming the argument is complex (=jw) -function polysplit{T<:Real}(p::Poly{T}) +function polysplit(p::Poly{T}) where {T<:Real} rp = copy(coeffs(p)) ip = copy(rp) diff --git a/src/analysis/rootlocus.jl b/src/analysis/rootlocus.jl index 62ba131..be65851 100644 --- a/src/analysis/rootlocus.jl +++ b/src/analysis/rootlocus.jl @@ -1,4 +1,4 @@ -type RootLocusResponse{T} <: SystemResponse +mutable struct RootLocusResponse{T} <: SystemResponse K::Vector{T} # gains systf::TransferFunction{Val{:siso}} real_p::Matrix{T} # real part of poles @@ -8,9 +8,9 @@ type RootLocusResponse{T} <: SystemResponse d0::T # radius tloc::Int - function (::Type{RootLocusResponse}){S<:Real,U<:Real,V<:Real}( - K::Vector{S}, systf::TransferFunction{Val{:siso}}, real_p::Matrix{U}, - imag_p::Matrix{V}, real_m0::Real, imag_m0::Real, d0::Real) + function (::Type{RootLocusResponse})(K::Vector{S}, + systf::TransferFunction{Val{:siso}}, real_p::Matrix{U}, imag_p::Matrix{V}, + real_m0::Real, imag_m0::Real, d0::Real) where {S<:Real,U<:Real,V<:Real} if size(real_p) != size(imag_p) warn("RootLocusResponse: mag and phase must have same dimensions") throw(DomainError()) @@ -40,9 +40,8 @@ type RootLocusResponse{T} <: SystemResponse end # Iteration interface -start(rls::RootLocusResponse) = (rls.tloc = 1) -done(rls::RootLocusResponse, state) = state >= length(rls.K) -next(rls::RootLocusResponse, state) = (state+=1; rls.tloc = state; (rls, state)) +iterate(rls::RootLocusResponse) = begin rls.tloc = 1; (rls, 1) end +iterate(rls::RootLocusResponse, state) = state >= length(rls.K) ? nothing : (state+=1; rls.tloc = state; (rls, state)) # Plot some outputs for some inputs @recipe function f(rls::RootLocusResponse) @@ -134,14 +133,14 @@ julia> sys = tf([2., 5, 1], [1., 2, 3]); julia> rl = rootlocus(sys); """ -function rootlocus{S}(sys::LtiSystem{Val{:siso}}, K::AbstractVector{S}=Float64[]; - kwargs...) +function rootlocus(sys::LtiSystem{Val{:siso}}, K::AbstractVector{S}=Float64[]; + kwargs...) where {S} systf = tf(sys) rootlocus(systf, K; kwargs...) end -function rootlocus{S<:Real}(systf::TransferFunction{Val{:siso}}, - K::AbstractVector{S}=Float64[]; N::Int=100) +function rootlocus(systf::TransferFunction{Val{:siso}}, + K::AbstractVector{S}=Float64[]; N::Int=100) where {S<:Real} r = systf.mat[1] nump = num(r) denp = den(r) diff --git a/src/c2d.jl b/src/c2d.jl index edf2c0c..862bf03 100644 --- a/src/c2d.jl +++ b/src/c2d.jl @@ -8,7 +8,7 @@ using LTISystems: LtiSystem, StateSpace, TransferFunction @compat abstract type Method end # Zero-Order-Hold -immutable ZOH <: Method +struct ZOH <: Method end @compat function (m::ZOH)(A::AbstractMatrix, B::AbstractMatrix, C::AbstractMatrix, @@ -32,13 +32,13 @@ end Ad, Bd, Cd, Dd, Ts, x0map = m(s.A, s.B, s.C, s.D, Ts) ss(Ad, Bd, Cd, Dd, Ts), x0map end -@compat (m::ZOH){T}(s::TransferFunction{Val{T},Val{:cont}}, Ts::Real) = +@compat (m::ZOH)(s::TransferFunction{Val{T},Val{:cont}}, Ts::Real) where {T} = tf(m(ss(s), Ts)[1]) -@compat (m::ZOH){T}(s::LtiSystem{Val{T},Val{:cont}}, Ts::Real) = +@compat (m::ZOH)(s::LtiSystem{Val{T},Val{:cont}}, Ts::Real) where {T} = m(ss(s), Ts)[1] # First-Order-Hold -immutable FOH <: Method +struct FOH <: Method end @compat function (m::FOH)(A::AbstractMatrix, B::AbstractMatrix, C::AbstractMatrix, @@ -65,15 +65,15 @@ end Ad, Bd, Cd, Dd, Ts, x0map = m(s.A, s.B, s.C, s.D, Ts) ss(Ad, Bd, Cd, Dd, Ts), x0map end -@compat (m::FOH){T}(s::TransferFunction{Val{T},Val{:cont}}, Ts::Real) = +@compat (m::FOH)(s::TransferFunction{Val{T},Val{:cont}}, Ts::Real) where {T} = tf(m(ss(s), Ts)[1]) -@compat (m::FOH){T}(s::LtiSystem{Val{T},Val{:cont}}, Ts::Real) = +@compat (m::FOH)(s::LtiSystem{Val{T},Val{:cont}}, Ts::Real) where {T} = m(ss(s), Ts)[1] # Generalized Bilinear Transformation -immutable Bilinear{T<:Real} <: Method +struct Bilinear{T<:Real} <: Method α::T - @compat function (::Type{Bilinear}){T}(α::T = 0.5) + @compat function (::Type{Bilinear})(α::T = 0.5) where {T} @assert α ≥ 0. && α ≤ 1. "Bilinear: α must be between 0 and 1" new{T}(α) end @@ -87,7 +87,7 @@ end ima = I - α*Ts*A Ad = ima\(I + (1.0-α)*Ts*A) Bd = ima\(Ts*B) - Cd = (ima.'\C.').' + Cd = transpose(transpose(ima)\transpose(C)) Dd = D + α*(C*Bd) x0map = [speye(nx) spzeros(nx, nu)] Ad, Bd, Cd, Dd, Ts, x0map @@ -100,13 +100,13 @@ end Ad, Bd, Cd, Dd, Ts, x0map = m(s.A, s.B, s.C, s.D, Ts) ss(Ad, Bd, Cd, Dd, Ts), x0map end -@compat (m::Bilinear){T}(s::TransferFunction{Val{T},Val{:cont}}, Ts::Real) = +@compat (m::Bilinear)(s::TransferFunction{Val{T},Val{:cont}}, Ts::Real) where {T} = tf(m(ss(s), Ts)[1]) -@compat (m::Bilinear){T}(s::LtiSystem{Val{T},Val{:cont}}, Ts::Real) = +@compat (m::Bilinear)(s::LtiSystem{Val{T},Val{:cont}}, Ts::Real) where {T} = m(ss(s), Ts)[1] # Forward Euler -immutable ForwardEuler <: Method +struct ForwardEuler <: Method end @compat function (m::ForwardEuler)(A::AbstractMatrix, B::AbstractMatrix, @@ -128,13 +128,13 @@ end Ad, Bd, Cd, Dd, Ts, x0map = m(s.A, s.B, s.C, s.D, Ts) ss(Ad, Bd, Cd, Dd, Ts), x0map end -@compat (m::ForwardEuler){T}(s::TransferFunction{Val{T},Val{:cont}}, Ts::Real) = +@compat (m::ForwardEuler)(s::TransferFunction{Val{T},Val{:cont}}, Ts::Real) where {T} = tf(m(ss(s), Ts)[1]) -@compat (m::ForwardEuler){T}(s::LtiSystem{Val{T},Val{:cont}}, Ts::Real) = +@compat (m::ForwardEuler)(s::LtiSystem{Val{T},Val{:cont}}, Ts::Real) where {T} = m(ss(s), Ts)[1] # Backward Euler -immutable BackwardEuler <: Method +struct BackwardEuler <: Method end @compat function (m::BackwardEuler)(A::AbstractMatrix, B::AbstractMatrix, @@ -144,7 +144,7 @@ end ima = I - Ts*A Ad = ima\eye(nx) Bd = ima\(Ts*B) - Cd = (ima.'\C.').' + Cd = transpose(transpose(ima)\transpose(C)) Dd = D + C*Bd x0map = [speye(nx) spzeros(nx, nu)] Ad, Bd, Cd, Dd, Ts, x0map @@ -157,9 +157,9 @@ end Ad, Bd, Cd, Dd, Ts, x0map = m(s, Ts) ss(Ad, Bd, Cd, Dd, Ts), x0map end -@compat (m::BackwardEuler){T}(s::TransferFunction{Val{T},Val{:cont}}, Ts::Real) = +@compat (m::BackwardEuler)(s::TransferFunction{Val{T},Val{:cont}}, Ts::Real) where {T} = tf(m(ss(s), Ts)[1]) -@compat (m::BackwardEuler){T}(s::LtiSystem{Val{T},Val{:cont}}, Ts::Real) = +@compat (m::BackwardEuler)(s::LtiSystem{Val{T},Val{:cont}}, Ts::Real) where {T} = m(ss(s), Ts)[1] end @@ -199,15 +199,15 @@ The generalized bilinear transform uses the parameter α and is based on [1]. - [1] G. Zhang, X. Chen, and T. Chen, Digital redesign via the generalized bilinear transformation, Int. J. Control, vol. 82, no. 4, pp. 741-754, 2009. """ -function c2d{T}(s::StateSpace{T,Val{:cont}}, Ts::Real, - method = Discretization.ZOH()) +function c2d(s::StateSpace{T,Val{:cont}}, Ts::Real, + method = Discretization.ZOH()) where {T} @assert Ts > zero(Ts) && !isinf(Ts) "c2d: Ts must be a positive number" sys, x0map = method(s, Ts) return sys::StateSpace{T,Val{:disc}}, x0map::AbstractMatrix end -function c2d{T}(s::LtiSystem{T,Val{:cont}}, Ts::Real, - method = Discretization.ZOH()) +function c2d(s::LtiSystem{T,Val{:cont}}, Ts::Real, + method = Discretization.ZOH()) where {T} @assert Ts > zero(Ts) && !isinf(Ts) "c2d: Ts must be a positive number" method(s, Ts)::LtiSystem{T,Val{:disc}} end -c2d{T}(method::Function, s::LtiSystem{T,Val{:cont}}, Ts::Real) = c2d(s, Ts, method) +c2d(method::Function, s::LtiSystem{T,Val{:cont}}, Ts::Real) where {T} = c2d(s, Ts, method) diff --git a/src/d2c.jl b/src/d2c.jl index 03a4eb3..bd1a9e3 100644 --- a/src/d2c.jl +++ b/src/d2c.jl @@ -4,7 +4,7 @@ Recovers the continuous time which was sampled with a zero-order-hold to obtain the discrete time system `s`. """ -function d2c{S}(s::StateSpace{S,Val{:disc}}) +function d2c(s::StateSpace{S,Val{:disc}}) where {S} A, B, C, D = s.A, s.B, s.C, s.D for λ in eig(A)[1] println(λ) @@ -23,4 +23,4 @@ function d2c{S}(s::StateSpace{S,Val{:disc}}) ss(Ac, Bc, Cc, Dc) end -d2c{S}(s::LtiSystem{S,Val{:disc}}) = d2c(ss(s)) +d2c(s::LtiSystem{S,Val{:disc}}) where {S} = d2c(ss(s)) diff --git a/src/design/place.jl b/src/design/place.jl index 6fb7e23..bc6b789 100644 --- a/src/design/place.jl +++ b/src/design/place.jl @@ -57,34 +57,32 @@ Complex{Float64}[4] feedback parametrization." IEEE International Symposium on Computer-Aided Control System Design, 2000. """ -function place{S<:Real,U<:Real,V<:Number}( - A::AbstractArray{S, 2}, B::AbstractArray{U, 2}, p::AbstractArray{V, 1}; - α::Real = 0.99, rtol::Real=1e-3, iter::Integer=200) +function place(A::AbstractArray{S, 2}, B::AbstractArray{U, 2}, p::AbstractArray{V, 1}; + α::Real = 0.99, rtol::Real=1e-3, iter::Integer=200) where {S<:Real,U<:Real,V<:Number} # define optimization problem d = Poleplacement(A, B, p; α=α, rtol=rtol) - if(size(A,1) - d.m > 0) # if there is something to optimize over - df = OnceDifferentiable(x -> eval_f(d::Poleplacement, x), - (x, grad_f) -> eval_grad_f(d::Poleplacement, grad_f, x)) + if (size(A,1) - d.m > 0) # if there is something to optimize over + df = OnceDifferentiable(x -> eval_f(d::Poleplacement, x), (x, grad_f) -> eval_grad_f(d::Poleplacement, grad_f, x)) res = optimize(df, - rand(eltype(d.xₚ), length(d.xₚ)), - Optim.BFGS(), - Optim.Options(iterations = iter)) + rand(eltype(d.xₚ), length(d.xₚ)), + Optim.BFGS(), + Optim.Options(iterations = iter)) end + # transform controller according to the factorization of A - K = hcat(zeros(size(d.K,1), d.m), d.K)*d.Qₐ.' + K = hcat(zeros(size(d.K,1), d.m), d.K)*transpose(d.Qₐ) end -function place{S<:Real,U<:Real,V<:Number}( - A::AbstractArray{S, 2}, B::AbstractArray{U, 2}, p::AbstractArray{V, 1}, - solver::AbstractMathProgSolver; - α::Real = 0.99, rtol::Real=1e-3, iter::Integer=200) +function place(A::AbstractArray{S, 2}, B::AbstractArray{U, 2}, + p::AbstractArray{V, 1}, solver::AbstractMathProgSolver; + α::Real = 0.99, rtol::Real=1e-3, iter::Integer=200) where {S<:Real,U<:Real,V<:Number} # define optimization problem d = Poleplacement(A, B, p; α=α, rtol=rtol) - if(size(A,1) - d.m > 0) # if there is something to optimize over + if (size(A,1) - d.m > 0) G0 = randn(size(A,1)-d.m, size(B,2)) # random initial point n = length(G0) l = -Inf*ones(n) @@ -102,11 +100,11 @@ function place{S<:Real,U<:Real,V<:Number}( throw(InvalidStateException()) end end - # transform controller according to the factorization of A - K = hcat(zeros(size(d.K,1), d.m), d.K)*d.Qₐ.' + + K = hcat(zeros(size(d.K,1), d.m), d.K)*transpose(d.Qₐ) end -type Poleplacement{T,M} <: AbstractNLPEvaluator +mutable struct Poleplacement{T,M} <: AbstractNLPEvaluator K::M A::M B::M @@ -118,9 +116,9 @@ type Poleplacement{T,M} <: AbstractNLPEvaluator m::Integer Qₐ::M - @compat function (::Type{Poleplacement}){S<:Real,U<:Real,V<:Number}( - A::AbstractArray{S, 2}, B::AbstractArray{U, 2}, p::AbstractArray{V, 1}; - α::Real = 0.99, rtol::Real=1e-3) + @compat function (::Type{Poleplacement})(A::AbstractArray{S, 2}, + B::AbstractArray{U, 2}, p::AbstractArray{V, 1}; α::Real = 0.99, + rtol::Real=1e-3) where {S<:Real,U<:Real,V<:Number} T = promote_type(eltype(A), eltype(B), real(eltype(p)), typeof(α), Float16) A = one(T)*A B = one(T)*B @@ -134,14 +132,15 @@ type Poleplacement{T,M} <: AbstractNLPEvaluator end # schur factorization of A - Rₐ, Qₐ, λ = schur(A) + F = schur(A) + values = copy(F.values) # find eigenvalues not moved select = zeros(Bool, length(p)) for i in eachindex(p) - j = findfirst(y->isapprox(p[i],y; rtol=rtol), λ) - if (j > 0) - splice!(λ, j) + j = findfirst(y->isapprox(p[i], y; rtol=rtol), values) + if (j != nothing) + splice!(values, j) select[i] = true end end @@ -154,8 +153,10 @@ type Poleplacement{T,M} <: AbstractNLPEvaluator # form, i.e. in A₃ # QₐᵀAQₐ = Rₐ = [A₁ A₂; QₐᵀB = QB = [B₁; # 0 A₃] B₂] - ordschur!(Rₐ, Qₐ, select) - Qᵦ = Qₐ.'*B + ordschur!(F, select) + Rₐ, Qₐ, λ = F + + Qᵦ = transpose(Qₐ)*B A₃ = Rₐ[m+1:end,m+1:end] B₂ = Qᵦ[m+1:end,:] @@ -163,8 +164,8 @@ type Poleplacement{T,M} <: AbstractNLPEvaluator # of X, κ(X) according to cost function J = ακ(X) + (1-α)‖K‖² G = randn(T,size(B₂,2),size(A₃,2)) xₚ = randn(T,length(G)) - X = eye(T,size(A₃,1)) - Xᵢ = eye(T,size(A₃,1)) + X = Matrix(Diagonal{T}(I,size(A₃,1))) + Xᵢ = Matrix(Diagonal{T}(I,size(A₃,1))) K = zeros(T, size(G*Xᵢ)) new{T,typeof(X)}(K, A₃, B₂, Ã, α, xₚ, X, Xᵢ, m, Qₐ) @@ -177,10 +178,11 @@ function common_first_sylvester!(d::Poleplacement, x) d.xₚ[:] = x G = reshape(x, size(d.B,2), size(d.A,2)) # solve AX - XÃ = -B*G - X, scale = LAPACK.trsyl!('N', 'N', d.A, d.Ã, -d.B*G, -1) - scale!(X, inv(scale)) # this scale is always 1? - d.X[:] = X - d.Xᵢ[:] = inv(X) +# X, scale = LAPACK.trsyl!('N', 'N', d.A, d.Ã, -d.B*G, -1) +# X /= scale # this scale is always 1? +# d.X[:] = X + d.X[:] = sylvester(d.A, -d.Ã, d.B*G) + d.Xᵢ[:] = inv(d.X) d.K[:] = G*d.Xᵢ end end @@ -205,12 +207,13 @@ eval_g(d::Poleplacement, g, x) = nothing function eval_grad_f(d::Poleplacement, grad_f, x) common_first_sylvester!(d, x) X,Xᵢ,K,α = d.X,d.Xᵢ,d.K,d.α - # solve ÃU - UA = -S + H = Xᵢ*K' - S = α*(-X.' + Xᵢ*Xᵢ.'*Xᵢ) + (1-α)*H*K # Xi*Xi.'*Xi (X.'*X)\Xi - U,scale = LAPACK.trsyl!('N', 'N', d.Ã, d.A, -S, -1) - scale!(U, inv(scale)) # this scale is always 1? + S = α*(-transpose(X) + Xᵢ*transpose(Xᵢ)*Xᵢ) + (1-α)*H*K # Xi*Xi.'*Xi (X.'*X)\Xi + + # solve ÃU - UA = -S + U = sylvester(d.Ã, -d.A, S) # calculate gradient - grad_f[:] = vec((1-α)*H' + d.B.'*U.') + grad_f[:] = vec((1-α)*H' + transpose(d.B)*transpose(U)) end diff --git a/src/matrix_comps/covar.jl b/src/matrix_comps/covar.jl index e27521a..35860ba 100644 --- a/src/matrix_comps/covar.jl +++ b/src/matrix_comps/covar.jl @@ -4,7 +4,7 @@ Calculate the stationary covariance of an LTI model `sys`, driven by Gaussian white noise of covariance `W` """ -function covar{S}(sys::StateSpace{S,Val{:cont}}, W::StridedMatrix) +function covar(sys::StateSpace{S,Val{:cont}}, W::StridedMatrix) where {S} A, B, C, D = sys.A, sys.B, sys.C, sys.D if size(B,2) != size(W, 1) || size(W, 1) != size(W, 2) error("W must be a square matrix the same size as `sys.B` columns") @@ -16,7 +16,7 @@ function covar{S}(sys::StateSpace{S,Val{:cont}}, W::StridedMatrix) return C*Q*C' end end -function covar{S}(sys::StateSpace{S,Val{:disc}}, W::StridedMatrix) +function covar(sys::StateSpace{S,Val{:disc}}, W::StridedMatrix) where {S} A, B, C, D = sys.A, sys.B, sys.C, sys.D if size(B,2) != size(W, 1) || size(W, 1) != size(W, 2) error("W must be a square matrix the same size as `sys.B` columns") diff --git a/src/matrix_comps/gram.jl b/src/matrix_comps/gram.jl index d2dae2a..2593e1d 100644 --- a/src/matrix_comps/gram.jl +++ b/src/matrix_comps/gram.jl @@ -5,21 +5,21 @@ Compute the grammian of state-space system `sys`. If `opt` is `:c`, computes the controllability grammian. If `opt` is `:o`, computes the observability grammian. """ -function gram{S,T}(sys::StateSpace{S,Val{T}}, ::Type{Val{:c}}) +function gram(sys::StateSpace{S,Val{T}}, ::Type{Val{:c}}) where {S,T} if !isstable(sys) error("gram only valid for stable systems") else return lyap(sys.A, sys.B*sys.B',Val{T}) end end -function gram{S,T}(sys::StateSpace{S,Val{T}}, ::Type{Val{:o}}) +function gram(sys::StateSpace{S,Val{T}}, ::Type{Val{:o}}) where {S,T} if !isstable(sys) error("gram only valid for stable systems") else return lyap(sys.A', sys.C'*sys.C,Val{T}) end end -function gram{T}(sys::StateSpace, ::Type{Val{T}}) +function gram(sys::StateSpace, ::Type{Val{T}}) where {T} error("opt must be either :c for controllability grammian, or :o for observability grammian") end gram(sys::StateSpace, T::Symbol) = gram(sys,Val{T}) diff --git a/src/matrix_comps/lyapunov.jl b/src/matrix_comps/lyapunov.jl index de22a02..fedb9ed 100644 --- a/src/matrix_comps/lyapunov.jl +++ b/src/matrix_comps/lyapunov.jl @@ -5,12 +5,12 @@ Compute the solution `X` to the discrete Lyapunov equation `AX + XA' + Q = 0`. """ # TODO: Change code by SLICOT version -function clyap{T<:BlasFloat}(A::StridedMatrix{T}, Q::StridedMatrix{T}) +function clyap(A::StridedMatrix{T}, Q::StridedMatrix{T}) where {T} lhs = kron(speye(size(A)...), A) + kron(conj(A),speye(size(A)...)) x = -lhs\reshape(Q, prod(size(Q)), 1) return reshape(x, size(Q)) end -clyap{T1<:Real,T2<:Real}(A::StridedMatrix{T1}, Q::StridedMatrix{T2}) = +clyap(A::StridedMatrix{T1}, Q::StridedMatrix{T2}) where {T1<:Real,T2<:Real} = clyap(float(A), float(Q)) @@ -21,17 +21,17 @@ Compute the solution `X` to the discrete Lyapunov equation `AXA' - X + Q = 0`. """ # TODO: Change code by SLICOT version -function dlyap{T<:BlasFloat}(A::StridedMatrix{T}, Q::StridedMatrix{T}) +function dlyap(A::StridedMatrix{T}, Q::StridedMatrix{T}) where {T} lhs = kron(conj(A), A) lhs = speye(size(lhs)...) - lhs x = lhs\reshape(Q, prod(size(Q)), 1) return reshape(x, size(Q)) end -dlyap{T1<:Real,T2<:Real}(A::StridedMatrix{T1}, Q::StridedMatrix{T2}) = +dlyap(A::StridedMatrix{T1}, Q::StridedMatrix{T2}) where {T1<:Real,T2<:Real} = dlyap(float(A), float(Q)) -lyap{T<:BlasFloat}(A::StridedMatrix{T}, Q::StridedMatrix{T},::Type{Val{:cont}}) = +lyap(A::StridedMatrix{T}, Q::StridedMatrix{T},::Type{Val{:cont}}) where {T} = clyap(A,Q) -lyap{T<:BlasFloat}(A::StridedMatrix{T}, Q::StridedMatrix{T},::Type{Val{:disc}}) = +lyap(A::StridedMatrix{T}, Q::StridedMatrix{T},::Type{Val{:disc}}) where {T} = dlyap(A,Q) diff --git a/src/matrix_comps/norm.jl b/src/matrix_comps/norm.jl index 3fa0678..cf10903 100644 --- a/src/matrix_comps/norm.jl +++ b/src/matrix_comps/norm.jl @@ -4,7 +4,7 @@ Compute the `p`-norm of the system `sys`. `p` can be either `2` or `Inf` (default is 2) """ -function norm{S}(sys::StateSpace{S,Val{:cont}}, ::Type{Val{2}}) +function norm(sys::StateSpace{S,Val{:cont}}, ::Type{Val{2}}) where {S} A, B, C, D = sys.A, sys.B, sys.C, sys.D if !isstable(sys) || any(D .!= 0) return Inf @@ -13,7 +13,7 @@ function norm{S}(sys::StateSpace{S,Val{:cont}}, ::Type{Val{2}}) return sqrt(trace(C*Q*C')) end end -function norm{S}(sys::StateSpace{S,Val{:disc}}, ::Type{Val{2}}) +function norm(sys::StateSpace{S,Val{:disc}}, ::Type{Val{2}}) where {S} A, B, C, D = sys.A, sys.B, sys.C, sys.D if !isstable(sys) return Inf @@ -24,4 +24,4 @@ function norm{S}(sys::StateSpace{S,Val{:disc}}, ::Type{Val{2}}) end norm(sys::LtiSystem) = norm(sys,Val{2}) norm(sys::LtiSystem,n::Int) = norm(sys,Val{n}) -norm{T}(sys::LtiSystem,::Type{Val{T}}) = norm(ss(sys),Val{T}) +norm(sys::LtiSystem,::Type{Val{T}}) where {T} = norm(ss(sys),Val{T}) diff --git a/src/matrix_comps/realjordanform.jl b/src/matrix_comps/realjordanform.jl index 233e1f1..1e056ae 100644 --- a/src/matrix_comps/realjordanform.jl +++ b/src/matrix_comps/realjordanform.jl @@ -17,7 +17,7 @@ julia> realjordanform(D) ``` """ -function realjordanform{T<:Number}(D::AbstractVector{T}) +function realjordanform(D::AbstractVector{T}) where {T<:Number} sort!(D, by=imag) sort!(D, by=x->abs(imag(x))) # make sure conjugated pairs are next to eachother sort!(D, by=real) @@ -27,7 +27,7 @@ function realjordanform{T<:Number}(D::AbstractVector{T}) while i <= length(D) d = D[i] if isreal(d) - n = findlast(D, d) - i + 1 # multiplicity of real eigenvalue + n = findlast(x -> x==d, D) - i + 1 # multiplicity of real eigenvalue @assert all(D[i+j] == d for j = 1:n-1) "There should be $n eigenvalues equal to $d" # fill jordan block for real eigenvalue @@ -38,7 +38,7 @@ function realjordanform{T<:Number}(D::AbstractVector{T}) end i += n else - n = findlast(D, d) - i + 1 # multiplicity of complex eigenvalue + n = findlast(x -> x==d, D) - i + 1 # multiplicity of complex eigenvalue @assert all(D[i+j] == d for j = 1:n-1) "There should be $n eigenvalues equal to $d" @assert all(D[i+n+j] == conj(d) for j = 1:n-1) "There should be $n eigenvalues equal to $(conj(d))" # construct real block C @@ -49,8 +49,8 @@ function realjordanform{T<:Number}(D::AbstractVector{T}) # fill jordan block for complex eigenvalue J[i:i+1,i:i+1] = C for k = 1:n-1 - J[i+2(k-1)+(0:1),i+2k+(0:1)] = eye(C) - J[i+2k+(0:1),i+2k+(0:1)] = C + J[(0:1).+(i+2(k-1)), (0:1).+(i+2k)] = Diagonal{T}(I,size(C,1)) + J[(0:1).+(i+2k), (0:1).+(i+2k)] = C end i += 2n end diff --git a/src/matrix_comps/riccati.jl b/src/matrix_comps/riccati.jl index 159ae97..cc58b79 100644 --- a/src/matrix_comps/riccati.jl +++ b/src/matrix_comps/riccati.jl @@ -9,8 +9,8 @@ Laub, "A Schur Method for Solving Algebraic Riccati Equations." http://dspace.mit.edu/bitstream/handle/1721.1/1301/R-0859-05666488.pdf """ # TO DO: Change code by SLICOT version -function care{T<:BlasFloat}(A::StridedMatrix{T}, B::StridedMatrix{T}, - Q::StridedMatrix{T}, R::StridedMatrix{T}) +function care(A::StridedMatrix{T}, B::StridedMatrix{T}, + Q::StridedMatrix{T}, R::StridedMatrix{T}) where {T} G = try B*inv(R)*B' catch @@ -29,8 +29,9 @@ function care{T<:BlasFloat}(A::StridedMatrix{T}, B::StridedMatrix{T}, U21 = U[div(m,2)+1:m, 1:div(n,2)] return U21/U11 end -care{T1<:Real,T2<:Real,T3<:Real,T4<:Real}(A::StridedMatrix{T1}, B::StridedMatrix{T2}, - Q::StridedMatrix{T3}, R::StridedMatrix{T4}) = care(float(A), float(B), float(Q), float(R)) +care(A::StridedMatrix{T1}, B::StridedMatrix{T2}, Q::StridedMatrix{T3}, + R::StridedMatrix{T4}) where {T1<:Real,T2<:Real,T3<:Real,T4<:Real} = + care(float(A), float(B), float(Q), float(R)) """ `dare(A, B, Q, R)` @@ -44,8 +45,8 @@ Laub, "A Schur Method for Solving Algebraic Riccati Equations." http://dspace.mit.edu/bitstream/handle/1721.1/1301/R-0859-05666488.pdf """ # TO DO: Change code by SLICOT version -function dare{T<:BlasFloat}(A::StridedMatrix{T}, B::StridedMatrix{T}, - Q::StridedMatrix{T}, R::StridedMatrix{T}) +function dare(A::StridedMatrix{T}, B::StridedMatrix{T}, Q::StridedMatrix{T}, + R::StridedMatrix{T}) where {T} G = try B*inv(R)*B' catch @@ -70,5 +71,6 @@ function dare{T<:BlasFloat}(A::StridedMatrix{T}, B::StridedMatrix{T}, U21 = U[div(m,2)+1:m, 1:div(n,2)] return U21/U11 end -dare{T1<:Real,T2<:Real,T3<:Real,T4<:Real}(A::StridedMatrix{T1}, B::StridedMatrix{T2}, - Q::StridedMatrix{T3}, R::StridedMatrix{T4}) = dare(float(A), float(B), float(Q), float(R)) +dare(A::StridedMatrix{T1}, B::StridedMatrix{T2}, Q::StridedMatrix{T3}, + R::StridedMatrix{T4}) where {T1<:Real,T2<:Real,T3<:Real,T4<:Real} = + dare(float(A), float(B), float(Q), float(R)) diff --git a/test/design/place.jl b/test/design/place.jl index 227dee1..2dfb354 100644 --- a/test/design/place.jl +++ b/test/design/place.jl @@ -133,10 +133,10 @@ for (A,B,p,κ,c) in ((A₁,B₁,p₁,κ₁,c₁), (A₂,B₂,p₂,κ₂,c₂), ( (A₇,B₇,p₇,κ₇,c₇), (A₈,B₈,p₈,κ₈,c₈), (A₉,B₉,p₉,κ₉,c₉)) for placer in placers F = placer(A,B,p) - λ, V = eig(A+B*F) + λ, V = eigen(A+B*F) - @test cond(V) < κ - @test vecnorm(F) < c + @test cond(V) < κ + @test norm(F) < c for i in 1:length(p) j = findfirst(y->isapprox(y, p[i], rtol=1e-3), λ) if j > 0 diff --git a/test/matrix_comps/realjordanform.jl b/test/matrix_comps/realjordanform.jl index 0c1ad42..9791699 100644 --- a/test/matrix_comps/realjordanform.jl +++ b/test/matrix_comps/realjordanform.jl @@ -6,6 +6,6 @@ JD = zeros(Int, 7,7) JD[1,1] = -1 JD[2:3,2:3] = C1 JD[4:5,4:5] = JD[6:7,6:7] = C2 -JD[4:5,6:7] = eye(Int, 2) +JD[4:5,6:7] = Diagonal{Int}(I,2) @test realjordanform(D) == JD diff --git a/test/runtests.jl b/test/runtests.jl index 02f5c3e..eb7ba1c 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -1,6 +1,7 @@ using ControlToolbox using NLopt -using Base.Test +using Test +using LinearAlgebra # write your own tests here include("matrix_comps/realjordanform.jl")