diff --git a/src/method.jl b/src/method.jl index 3ba227a..8281ba5 100644 --- a/src/method.jl +++ b/src/method.jl @@ -88,6 +88,11 @@ For advanced usage, first define a `PercivalSolver` to preallocate the memory us - `max_iter::Int = 2000`: maximum number of iterations; - `verbose::Int = 0`: if > 0, display iteration details every `verbose` iteration; - `μ::Real = T(10.0)`: Starting value of the penalty parameter; +- `η₀::T = T(0.5)`: Starting value for the contraints tolerance of the subproblem; +- `ω₀::T = T(1)`: Starting value for relative tolerance of the subproblem; +- `α₁::T = T(9 // 10)`: ``η = max(1 / al_nlp.μ^α₁, ϵp)`` if ``‖c(xᵏ)‖ ≤ η``; +- `β₁::T = T(1 // 10)`: ``η = max(1 / al_nlp.μ^β₁, ϵp)`` if ``‖c(xᵏ)‖ > η``; +- `μ_up::T = T(10)`: Multiplicative factor of `μ` if not ``‖c(xᵏ)‖ > η``; - `subsolver_logger::AbstractLogger = NullLogger()`: logger passed to `tron`; - `cgls_verbose::Int = 0`: verbosity level in `Krylov.cgls`; - `inity::Bool = false`: If `true` the algorithm uses `Krylov.cgls` to compute an approximation, otherwise we use `nlp.meta.y0`; @@ -286,7 +291,12 @@ function SolverCore.solve!( stats::GenericExecutionStats{T, V}; callback = (args...) -> nothing, x::V = nlp.meta.x0, - μ::Real = T(10.0), + μ::Real = T(10), + η₀::T = T(1 // 2), + ω₀::T = T(1), + α₁::T = T(9 // 10), + β₁::T = T(1 // 10), + μ_up::T = T(10), max_iter::Int = 2000, max_time::Real = 30.0, max_eval::Int = 200000, @@ -328,9 +338,6 @@ function SolverCore.solve!( y .= nlp.meta.y0 end set_constraint_multipliers!(stats, y) - # tolerance - η = T(0.5) - ω = T(1.0) # create initial subproblem reinit!(al_nlp, nlp, fx, μ, x, y) @@ -348,6 +355,9 @@ function SolverCore.solve!( # tolerance for optimal measure ϵd = atol + rtol * normgp ϵp = ctol + # tolerance + η = max(η₀, ϵp) + ω = ω₀ set_iter!(stats, 0) start_time = time() @@ -412,13 +422,13 @@ function SolverCore.solve!( iter_type = if normcx <= η update_y!(al_nlp) - η = max(η / al_nlp.μ^T(0.9), ϵp) + η = max(η / al_nlp.μ^α₁, ϵp) ω /= al_nlp.μ set_constraint_multipliers!(stats, al_nlp.y) :update_y else - update_μ!(al_nlp, 10 * al_nlp.μ) - η = max(1 / al_nlp.μ^T(0.1), ϵp) + update_μ!(al_nlp, μ_up * al_nlp.μ) + η = max(1 / al_nlp.μ^β₁, ϵp) ω = 1 / al_nlp.μ :update_μ end