diff --git a/docs/src/tutorial.md b/docs/src/tutorial.md index 0662392..2182d80 100644 --- a/docs/src/tutorial.md +++ b/docs/src/tutorial.md @@ -6,61 +6,4 @@ Pages = ["tutorial.md"] ``` -## Fine-tune CaNNOLeS - -CaNNOLeS.jl exports the function `cannoles`: -``` - cannoles(nlp :: AbstractNLPModel; kwargs...) -``` - -Find below a list of the main options of `cannoles`. - -### Tolerances on the problem - -``` -| Parameters | Type | Default | Description | -| -------------------- | ------------- | --------------- | -------------------------------------------------- | -| atol | AbstractFloat | √eps(T) | absolute tolerance. | -| rtol | AbstractFloat | √eps(T) | relative tolerance. | -| unbounded_threshold | AbstractFloat | -1e5 | below this threshold the problem is unbounded. | -| max_eval | Integer | 100000 | evaluation limit, e.g. `neval_residual(nls) + neval_cons(nls) > max_eval` | -| max_time | AbstractFloat | 30. | maximum number of seconds. | -| max_inner | Integer | 10000 | maximum number of iterations. | -``` - -### Algorithmic parameters - -``` -| Parameters | Type | Default | Description | -| --------------------------- | -------------- | ----------------- | -------------------------------------------------- | -| x | AbstractVector | copy(nls.meta.x0) | initial guess. | -| λ | AbstractVector | T[] | initial guess for the Lagrange mutlipliers. | -| method | Symbol | :Newton | method to compute direction, `:Newton`, `:LM`, `:Newton_noFHess`, or `:Newton_vanishing`. | -| linsolve | Symbol | :ma57 | solver use to compute the factorization: `:ma57`, `:ma97`, `:ldlfactorizations` | -| check_small_residual | Bool | false | | -| always_accept_extrapolation | Bool | false | | -| δdec | Real | T(0.1) | | -``` - -## Examples - -```@example ex1 -using CaNNOLeS, ADNLPModels - -# Rosenbrock -nls = ADNLSModel(x -> [x[1] - 1; 10 * (x[2] - x[1]^2)], [-1.2; 1.0], 2) -stats = cannoles(nls, atol = 1e-5, x = ones(2)) -``` - -```@example ex1 -# Constrained -nls = ADNLSModel( - x -> [x[1] - 1; 10 * (x[2] - x[1]^2)], - [-1.2; 1.0], - 2, - x -> [x[1] * x[2] - 1], - [0.0], - [0.0], -) -stats = cannoles(nls, max_time = 10.) -``` +You can check an [Introduction to CaNNOLeS.jl tutorial](https://jso.dev/tutorials/introduction-to-cannoles/) on our site, [JSO.dev](https://jso.dev).