This repository has been archived by the owner on Dec 15, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathDileep & Srikiran — Carbon Footprint.jl
708 lines (598 loc) · 24.2 KB
/
Dileep & Srikiran — Carbon Footprint.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
### A Pluto.jl notebook ###
# v0.12.21
using Markdown
using InteractiveUtils
# This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error).
macro bind(def, element)
quote
local el = $(esc(element))
global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : missing
el
end
end
# ╔═╡ 3b2050da-52c1-11eb-3b89-1d5b6eb2cf40
using PlutoUI, Printf, Plots, StatsPlots;
# ╔═╡ 49f027da-5dce-11eb-3fff-0fd590112019
using DataFrames, Distributions, Random
# ╔═╡ 8ae7009a-73c4-11eb-0374-25c172bd827e
md"""
# Carbon Footprint
"""
# ╔═╡ ae828cb2-86a8-11eb-2862-6137ecb692a5
md"""By: Dileep Kishore, Srikiran Chandrasekaran """
# ╔═╡ 94e65102-73c4-11eb-3cb4-81736a39e596
md"""
>A carbon footprint is the total greenhouse gas (GHG) emissions caused by an individual, event, organization, service, or product, expressed as carbon dioxide equivalent.
>Source: Wikipedia.
From an individual perspective, GHG may be emitted from activities such as driving a car, consuming food or even just streaming content over the internet.
In this dashboard we limit the sources of GHG emissions to:
1. Electricity usage
2. Food consumption
3. Streaming over the internet
4. Purchase of manufactured goods
5. Transportation
"""
# ╔═╡ 054ae36c-52cb-11eb-25aa-31355bbed6de
md"""## Sources of GHG emissions
Most of the data presented here was obtained from [NMF-earth](https://github.com/NMF-earth/carbon-footprint). The direct sources of the data are listed along with the source descriptions below:
"""
# ╔═╡ b4a152f0-4d4f-11eb-106b-b58e9f1495a9
import JSON, HTTP
# ╔═╡ 69f1de08-7e7f-11eb-1df1-c792e5e3ec57
md"""
First we write a function `read_json` to read `JSON` data from our [GitHub repository](https://github.com/quantumbrake/ghg-dashboard/) into a `Dict`
"""
# ╔═╡ cedb71ac-52b9-11eb-19e7-9f433ffb4f14
function read_json(
file::String;
repo::String = "https://raw.githubusercontent.com/quantumbrake/ghg-dashboard/main/"
)::Dict
file_url = repo * file
raw_string = String(HTTP.get(file_url).body)
data = JSON.parse(raw_string)
return data
end
# ╔═╡ b2b598f8-4d3f-11eb-310d-7740ecc9d222
md"""
### 1. Electricity usage
The emissions involved in generating 1 Joule of energy in various countries
Unit: $\frac{kgCO_2eq}{J}$
Unit of imported data: $\frac{kgCO_2eq}{kWh}$
Conversion factor (imported data -> data): $(\frac{x}{3.6}) * 10^{-6}$
**Sources**:
- https://github.com/carbonalyser/Carbonalyser
- https://www.electricitymap.org - 28th of April 2020
"""
# ╔═╡ 0fcd983e-52b7-11eb-2c1f-13d00c8b4c43
begin
pw_to_pj(x::Float64)::Float64 = (x / 3.6) * (10 ^ (-6))
electricity_data_pw = read_json("data/carbon_footprint/electricity.json")
values_pj = map(x -> pw_to_pj(x), values(electricity_data_pw))
electricity_data = Dict(zip(keys(electricity_data_pw), values_pj))
DataFrame(electricity_data)
end
# ╔═╡ 1fc15990-4d41-11eb-0f5f-c309cf01fdfa
md"""
### 2. Food consumption
The emissions involved in producing 1 item of various foods
Unit: $\frac{kgCO_2eq}{\textrm{item}}$
**Sources**:
- http://www.greeneatz.com/foods-carbon-footprint.html
- https://www.bilans-ges.ademe.fr
"""
# ╔═╡ 329e738a-52ba-11eb-22dd-fbfe2de89bb1
begin
food_data = read_json("data/carbon_footprint/food.json")
DataFrame(food_data)
end
# ╔═╡ e8574808-4d49-11eb-3515-2d66aadee9f2
md"""
### 3. Streaming over the internet
The emissions involved in streaming various content
Unit: $\frac{kgCO_2eq}{minute}$
**Standards used to calculate data size of streaming content**:
- HD / 720p : 1.21 GB (~ 2.5 hours)
- Full HD / 1080p : 7.02 GB (~ 2.5 hours)
- Ultra HD / 2160p : 35.73 Gb (~ 2.5 hours)
- MP3 song at 192 kbps : 3.8 MB (~ 2.5 mins)
"""
# ╔═╡ 83af9228-6353-11eb-0e5b-4550ac55ca4f
streaming_data = Dict(["HDVideo" => "Video HD",
"fullHDVideo" => "Video - FullHD/1080p",
"ultraHDVideo" => "Video - UltraHD/4K",
"audioMP3" => "Audio - MP3"]);
# ╔═╡ fb596dc6-4d41-11eb-1dbd-6707e4fa7778
md"""
Calculating the emissions involved in moving data between the device and datacenter through the network.
Unit: $kgCO_2eq$
**Sources**:
- https://theshiftproject.org/wp-content/uploads/2019/03/Lean-ICT-Report_The-Shift-Project_2019.pdf
- https://github.com/carbonalyser/
- https://www.carbonbrief.org/factcheck-what-is-the-carbon-footprint-of-streaming-video-on-netflix
"""
# ╔═╡ 227d45a0-4d45-11eb-0cca-af99bc390097
function kwatts_to_joules(x::Float64)::Float64
x * 3.6 * (10 ^ 6);
end
# ╔═╡ d4764dc0-7e81-11eb-29da-adbfa04c613b
md"""
We create a function to calculate the GHG emissions involved in transmitting `dataweight` (in bits) amount of data for a `duration` (in seconds) in a country with emission intensity equal to `electricity_intensity` (in $kgCO_2eq.J^{-1}$). As suggested by the units of this quantity, emission intensity is simply the amount of $CO_2$ in kilograms per emitted per Joule of energy produced.
"""
# ╔═╡ cfd60bf8-4d43-11eb-00b7-bd162061b954
function internet_carbonimpact(
duration::Float64,
data_weight::Float64,
electricity_intensity::Float64
)::Float64
factor = Dict(
"datacenter" => kwatts_to_joules(0.007 * (10 ^ (-9))) / 8,
"network" => kwatts_to_joules(0.058 * (10 ^ (-9))) / 8,
"device" => kwatts_to_joules(0.055 / (60 * 60))
)
ghg_datacenter = data_weight * get(factor, "datacenter", 0.0) * electricity_data["world"]
ghg_network = data_weight * get(factor, "network", 0.0) * electricity_data["world"]
ghg_device = duration * get(factor, "device", 0.0) * electricity_intensity
total = ghg_datacenter + ghg_network + ghg_device
return total
end
# ╔═╡ c25bfd94-7f7e-11eb-32ff-6fb869cd3b43
md"""
Next, we create a function to calculate carbon emissions created while streaming a particular type of content (`stream_type`) for `duration` (in seconds) in a country with emission intensity equal to `electricity_intensity` (in $kgCO_2eq.J^{-1}$)
"""
# ╔═╡ 5e3ae372-4d4a-11eb-3e76-e7b1545f3759
function streaming_carbonimpact(
stream_type::String,
duration::Float64,
electricity_intensity::Float64
)::Float64
# assuming movie duration = 2h 22m, and file size as given above.
# factor is a dictionary mapping kind of data to bits/s.
factor = Dict(
"HDVideo" => (1.21 * (10 ^ 9) * 8) / ((2 * 60 + 22) * 60),
"fullHDVideo" => (7.02* (10 ^ 9) * 8) / ((2 * 60 + 22) * 60),
"ultraHDVideo" => (35.73 * (10 ^ 9) * 8) / ((2 * 60 + 22) * 60),
"audioMP3" => (3.8 * (10 ^ 6) * 8) / 154
)
data_weight = get(factor, stream_type, 0.0)
total_carbonimpact = internet_carbonimpact(
duration,
data_weight,
electricity_intensity
)
return total_carbonimpact
end
# ╔═╡ cccb00f0-4d46-11eb-027b-ab6e07ce3ce5
md"""
### 4. Purchase of manufactured goods
The emissions involved in producing 1 item of various products
Unit: $\frac{kgCO_2eq}{item}$
**Sources Clothing**:
- https://www.ademe.fr/sites/default/files/assets/documents/poids_carbone-biens-equipement-201809-rapport.pdf
**Sources Tech**:
- https://www.apple.com/lae/environment/pdf/products/iphone/iPhone_11_Pro_PER_sept2019.pdf
- https://www.apple.com/lae/environment/pdf/products/ipad/iPad_PER_sept2019.pdf
- https://www.apple.com/lae/environment/pdf/products/desktops/21.5-inch_iMac_with_Retina4KDisplay_PER_Mar2019.pdf
- https://www.apple.com/lae/environment/pdf/products/notebooks/13-inch_MacBookPro_PER_June2019.pdf
- https://www.bilans-ges.ademe.fr/fr/basecarbone/donnees-consulter/liste-element?recherche=T%C3%A9l%C3%A9vision
**Sources Transport**:
- https://www.lowcvp.org.uk/assets/workingdocuments/MC-P-11-15a%20Lifecycle%20emissions%20report.pdf
"""
# ╔═╡ 42eb4b3e-52ba-11eb-2178-11e1d2a887af
begin
purchase_data = read_json("data/carbon_footprint/purchase.json")
DataFrame(purchase_data)
end
# ╔═╡ cd98af32-4d4b-11eb-2ffb-edbe9a3c069b
md"""
### 5. Transportation
The emissions per meter travelled in various vehicles
Unit: $\frac{kgCO_2eq}{m}$
**Sources**:
- https://static.ducky.eco/calculator_documentation.pdf
"""
# ╔═╡ 04b51758-52b7-11eb-10f9-f5be66cf0dec
begin
transport_data = read_json("data/carbon_footprint/transport.json")
DataFrame(transport_data)
end
# ╔═╡ 66d55490-7f7c-11eb-2d2d-77f9b4f7b184
md"""---"""
# ╔═╡ 0442fbb8-52c0-11eb-06ea-01e68e330d5d
md"""
## Carbon footprint Dashboard
"""
# ╔═╡ 52ee864c-8445-11eb-15b0-47a0f97b6fec
plotly()
# ╔═╡ 5fbcb6e6-52ca-11eb-3e8c-1bb7495dc15d
md"""### Check your emissions here
You can use this section to compute the total emissions from various activities. Note that this is emissions from all these activities, and not normalized on a per day basis for instance."""
# ╔═╡ 1b612ec2-52c1-11eb-22aa-3b406bd64623
md"""
#### Electricity:
Electricty location
$(@bind electricity_select Select([k => k for (k, v) in electricity_data]))
Electricity amount (in kWh)
$(@bind electricity_amount Slider(1:1000, default=10, show_value=true))
#### Food:
Food type
$(@bind food_select Select([k => k for (k, v) in food_data]))
Food amount (in grams)
$(@bind food_amount Slider(5:500, default=10, show_value=true))
#### Streaming:
Streaming type
$(@bind streaming_select Select(["HDVideo" => "Video HD",
"fullHDVideo" => "Video - FullHD/1080p",
"ultraHDVideo" => "Video - UltraHD/4K",
"audioMP3" => "Audio - MP3"]))
Duration (in minutes)
$(@bind streaming_amount Slider(10:600, default=60, show_value=true))
#### Purchases:
Recent purchases
$(@bind purchase_select MultiSelect([k => k for (k, v) in purchase_data]))
#### Transport:
Transport type
$(@bind transport_select Select([k => k for (k, v) in transport_data]))
Transport distance (in km)
$(@bind transport_distance Slider(1:1000, default=10, show_value=true))
"""
# ╔═╡ f5225d7a-5846-11eb-1497-c5d439899e6b
function emission_calculator(
transport_select::String,
transport_distance::Integer,
food_select::String,
food_amount::Integer,
streaming_select::String,
streaming_amount::Integer,
electricity_select::String,
electricity_amount::Integer,
purchase_select::Array,
)::Dict
transport_emissions = transport_data[transport_select] * transport_distance * 1000
food_emissions = food_data[food_select] * food_amount / 1000
streaming_emissions = streaming_carbonimpact(streaming_select,streaming_amount * 60.0,electricity_data["world"])
electricity_emissions = electricity_data_pw[electricity_select] * electricity_amount
if isempty(purchase_select)
purchase_emissions = 0.0
else
purchase_emissions = sum([purchase_data[purchase] for purchase in purchase_select])
end
total_emissions = (transport_emissions + food_emissions + streaming_emissions + electricity_emissions + purchase_emissions)
data = Dict(
"transport" => transport_emissions,
"food" => food_emissions,
"streaming" => streaming_emissions,
"electricity" => electricity_emissions,
"purchase" => purchase_emissions,
"total" => total_emissions,
)
return data
end
# ╔═╡ 8aa42c6e-6354-11eb-3c43-cb16327595c2
function emission_calculator(
transport_select::Array{String,1},
transport_distance::Array{Int64,1},
food_select::Array{String,1},
food_amount::Array{Int64,1},
streaming_select::Array{String,1},
streaming_amount::Array{Int64,1},
electricity_select::String,
electricity_amount::Int64,
purchase_select::Array{String, 1},
purchase_amount::Array{Int64, 1},
)::Dict
transport_emissions = 0
for (i, j) in zip(transport_select, transport_distance)
transport_emissions += transport_data[i] * j * 1000
end
food_emissions = 0
for (i, j) in zip(food_select, food_amount)
food_emissions += food_data[i] * j / 1000
end
streaming_emissions = 0
for (i, j) in zip(streaming_select, streaming_amount)
streaming_emissions += streaming_carbonimpact(i, j * 60.0,electricity_data["world"])
end
electricity_emissions = electricity_data_pw[electricity_select] * electricity_amount
purchase_emissions = 0.0
for (i, j) in zip(purchase_select, purchase_amount)
purchase_emissions += purchase_data[i] * j
end
total_emissions = (transport_emissions + food_emissions + streaming_emissions + electricity_emissions + purchase_emissions)
data = Dict(
"transport" => transport_emissions,
"food" => food_emissions,
"streaming" => streaming_emissions,
"electricity" => electricity_emissions,
"purchase" => purchase_emissions,
"total" => total_emissions,
)
return data
end
# ╔═╡ 9388aa8a-52c9-11eb-0dd8-3184bcfb93b2
begin
emissions_data = emission_calculator(
transport_select,
transport_distance,
food_select,
food_amount,
streaming_select,
streaming_amount,
electricity_select,
electricity_amount,
purchase_select,
)
transport_emissions = emissions_data["transport"]
food_emissions = emissions_data["food"]
streaming_emissions = emissions_data["streaming"]
electricity_emissions = emissions_data["electricity"]
purchase_emissions = emissions_data["purchase"]
total_emissions = emissions_data["total"]
"Emissions calculation code"
end
# ╔═╡ 2b0d264c-7f7f-11eb-2bf6-1119de8bbe96
begin
x = ["Electricity", "Food", "Streaming", "Purchases", "Transport"]
y = [electricity_emissions, food_emissions, streaming_emissions, purchase_emissions, transport_emissions]
pie(x, y, title="Emissions breakdown (Total = $(@sprintf("%.2f", total_emissions)) kgCO2eq)", legend=:right)
end
# ╔═╡ 0a38c120-52c6-11eb-2ec5-e7780b3e11ec
md"""
### Your carbon footprint:
| Emission source | kgCO2eq |
| --- | --- |
| Electricity | $(@sprintf("%.3f", electricity_emissions)) |
| Food | $(@sprintf("%.3f", food_emissions)) |
| Streaming | $(@sprintf("%.3f", streaming_emissions)) |
| Purchase | $(@sprintf("%.3f", purchase_emissions)) |
| Transport | $(@sprintf("%.3f", transport_emissions)) |
| **Total emissions** | **$(@sprintf("%.3f", total_emissions))** |
"""
# ╔═╡ ec388b4a-52ca-11eb-097d-6760de18dd0e
md"""---"""
# ╔═╡ 34baf426-7f7f-11eb-0cf0-bb0d1a7c28fd
md"""
## Carbon footprint simulations for different lifestyles
"""
# ╔═╡ 672fef94-6351-11eb-0af1-652d5992e129
Random.seed!(1234);
# ╔═╡ 18787dee-8446-11eb-2b9d-9967d7fe6d5c
md"""
We create a "Person" `struct` that stores information about a lifestyle. This can be used to simulate the daily behavior of a person following this lifestyle and understand emissions due to:
1. Vehicles owned and their usage distribution
2. Food consumed and their amount
3. Content streamed and their amount
4. Country of residence
5. Commonly purchased products and their purchase rates
>NOTE:
>We assume that the distributions for each emission type are applicable to all objects or items of that type.
>Eg: If `foods` are "tofu" and "beans" and the provided `food_consumption` distribution is $\mathcal{N}(150, 50)$, we assume that each food item follows that distribution.
"""
# ╔═╡ 49571046-68c2-11eb-071e-2709f8e40e48
struct Person
vehicles::Array{String,1}
transport_distribution::ContinuousUnivariateDistribution
foods::Array{String,1}
food_consumption::ContinuousUnivariateDistribution
streams::Array{String,1}
streaming_distribution::ContinuousUnivariateDistribution
country::String
electricity_usage::ContinuousUnivariateDistribution
purchases::Array{String,1}
purchase_rate::DiscreteUnivariateDistribution
end
# ╔═╡ e0ad3a7e-8447-11eb-2df2-3d52fffaab6b
md"""
We create functions to calculate the daily and yearly emissions of a `Person`:
"""
# ╔═╡ 2c63765e-68c3-11eb-317c-d1603846ca9c
function daily_emissions(person::Person)::Dict
transport_distances = floor.(
Int,
rand(
person.transport_distribution,
length(person.vehicles)
)
)
food_amounts = floor.(
Int,
rand(
person.food_consumption,
length(person.foods)
)
)
stream_amounts = floor.(
Int,
rand(
person.streaming_distribution,
length(person.streams)
)
)
electricity_amounts = floor.(
Int,
rand(
person.electricity_usage,
)
)
purchase_amounts = floor.(
Int,
rand(
person.purchase_rate,
length(person.purchases)
)
)
result = emission_calculator(
person.vehicles,
transport_distances,
person.foods,
food_amounts,
person.streams,
stream_amounts,
person.country,
electricity_amounts,
person.purchases,
purchase_amounts,
)
return result
end
# ╔═╡ 7bb8f0e4-8448-11eb-2bd5-e9f94078860e
function yearly_emissions(person::Person)::DataFrame
df = DataFrame(daily_emissions(person))
for i in range(2, stop=365)
push!(df, daily_emissions(person))
end
return df
end
# ╔═╡ 04badb38-8448-11eb-2750-fde9b58547e4
md"""
### Case Study: Switching from a meat rich diet to a vegan diet
Let us consider the case where a person following a meat rich diet considers switching to a vegan diet and the impact it would have on their carbon footprint
"""
# ╔═╡ 5114761e-84d0-11eb-094e-fde0d465d19e
md"""
We create a `Person` who eats a diet rich in meat and animal derived products (`person_meat`) and a `Person` who follows a vegan diet (`person_vegan`). The only differences between these two is in the food items they eat (consumption quantities are the same).
Each `Person`:
1. Owns a car and drives on an average of 50 km per day
2. Watches ultraHDVideo for an average of 240 mins a day
3. Lives in the USA and uses an average of 30 kWh of electrcity per day
4. Buys jeans, shirts and shoes at the rate of 1 per 100 days
Additionally:
- The `person_meat` eats an average of 120g of pork, chicken, milk, eggs and rice everyday
- The `person_vegan` eats an average of 120g of fruit, tofu, beans, vegetables and rice everyday
>Note that it is possible to create more accurate and sophisticated distributions, but for the purposes of this case study we have decided to limit it to simple foods and distributions.
"""
# ╔═╡ f9d0182e-8450-11eb-3f42-3df1cf54cf96
person_meat = Person(
["car"],
truncated(Normal(50, 5), 0, 1000),
["pork", "chicken", "milk", "eggs", "rice"],
truncated(Normal(120, 20), 0, 500),
["ultraHDVideo"],
truncated(Normal(240, 50), 0, 600), # 240 mins is US average
"usa",
truncated(Normal(30, 5), 0, 200), # 30 kwh is US average
["jeans", "shirt", "shoes"],
Poisson(0.01)
)
# ╔═╡ 521ebdb6-68c5-11eb-3bb2-8926b33ec780
person_vegan = Person(
["car"],
truncated(Normal(50, 5), 0, 1000),
["fruit", "tofu", "beans", "vegetables", "rice"],
truncated(Normal(120, 20), 0, 500),
["ultraHDVideo"],
truncated(Normal(240, 50), 0, 600), # 240 mins is US average
"usa",
truncated(Normal(30, 5), 0, 200), # 30 kwh is US average
["jeans", "shirt", "shoes"],
Poisson(0.01)
)
# ╔═╡ 081ee4fc-84f4-11eb-3bad-a1e680d897b3
md"""
The daily emissions of `person_meat` for a year:
"""
# ╔═╡ 2af54294-8451-11eb-29b9-dd400f6ceb74
emissions_meat = yearly_emissions(person_meat)
# ╔═╡ f0ecfbb6-84f3-11eb-0b02-27ffea69c7ca
md"""
The daily emissions of `person_vegan` for a year:
"""
# ╔═╡ 751bb036-844e-11eb-035b-6d62fe25bfce
emissions_vegan = yearly_emissions(person_vegan)
# ╔═╡ b185179e-8451-11eb-1877-593c6b4be750
begin
emissions_vegan_long = stack(emissions_vegan, [:electricity, :food, :purchase, :streaming, :transport]);
emissions_meat_long = stack(emissions_meat, [:electricity, :food, :purchase, :streaming, :transport]);
end;
# ╔═╡ 4d7c796a-84f4-11eb-19cf-dfd729ac8b98
md"""
A plot of the distributions of daily emissions of each `Person` in each category is shown below. Only the distribution of emissions from food consumption are distinctly different (as per the design of the case study)
"""
# ╔═╡ 5b1d34d4-8451-11eb-15b5-1d45b1b3cb01
begin
@df emissions_vegan_long violin(:variable, :value, side=:left, label="vegan diet", linewidth=0, title="Distribution of carbon emissions", ylabel="kgCO2eq")
@df emissions_meat_long violin!(:variable, :value, side=:right, label="meat diet", linewidth=0)
end
# ╔═╡ 2245ae6e-84f5-11eb-0bc9-61f05b3d6935
md"""
We then plot only the distribution of daily emissions from food consumption of both `person_vegan` and `person_meat`.
The means are $\approx$ $(@sprintf("%.3f", mean(emissions_meat[!, :food]) - mean(emissions_vegan[!, :food]))) kgCO2eq apart (with the meat diet having higher emissions) and we observe that the choice of foods allowed for the meat diet in this case study offer for a wider range of emissions compared to the vegan diet.
"""
# ╔═╡ b7a631d2-8454-11eb-3ff7-5b02d14ce2b9
begin
@df emissions_vegan density(:food, fill=(0, .5, :green), label="vegan diet (food)", xlabel="kgCO2eq", ylabel="Density", title="Density plot of daily emissions due to food", legend=:right)
@df emissions_meat density!(:food, fill=(0, .5, :red), label="meat diet (food)")
end
# ╔═╡ e6423e30-84f6-11eb-0c07-cdae8e894eb0
md"""
Does this shift in the distribution of emissions due to food consumption affect the overall carbon emissions in any significant way?
To answer this question we plot the distribution of total emissions (shown below) and observe that there is indeed a shift in the daily total emission by $\approx$ $(@sprintf("%.3f", mean(emissions_meat[!, :total]) - mean(emissions_vegan[!, :total]))) kgCO2eq, which means that the vegan diet has reduced daily emissions by $(@sprintf("%.2f", (1 - (mean(emissions_vegan[!, :total]) / mean(emissions_meat[!, :total]))) * 100 ))%
"""
# ╔═╡ c760edd0-8452-11eb-318b-9de3fd9409ae
begin
@df emissions_vegan density(:total, fill=(0, .5, :green), label="vegan diet (total)", xlabel="kgCO2eq", ylabel="Density", title="Density plot of the daily total emissions", legend=:right)
@df emissions_meat density!(:total, fill=(0, .5, :red), label="meat diet (total)")
end
# ╔═╡ 3ce10e94-8455-11eb-0083-3dea8a3ebc13
md"""
Total **annual** difference in emissions would amount to $\approx$ $(@sprintf("%.2f", sum(emissions_meat[!, :total]) - sum(emissions_vegan[!, :total]))) kgCO2eq. Implying that the switching to a vegan diet would allow one to reduce their carbon footprint by a considerable amount.
"""
# ╔═╡ Cell order:
# ╟─8ae7009a-73c4-11eb-0374-25c172bd827e
# ╟─ae828cb2-86a8-11eb-2862-6137ecb692a5
# ╟─94e65102-73c4-11eb-3cb4-81736a39e596
# ╟─054ae36c-52cb-11eb-25aa-31355bbed6de
# ╠═b4a152f0-4d4f-11eb-106b-b58e9f1495a9
# ╟─69f1de08-7e7f-11eb-1df1-c792e5e3ec57
# ╠═cedb71ac-52b9-11eb-19e7-9f433ffb4f14
# ╟─b2b598f8-4d3f-11eb-310d-7740ecc9d222
# ╟─0fcd983e-52b7-11eb-2c1f-13d00c8b4c43
# ╟─1fc15990-4d41-11eb-0f5f-c309cf01fdfa
# ╟─329e738a-52ba-11eb-22dd-fbfe2de89bb1
# ╟─e8574808-4d49-11eb-3515-2d66aadee9f2
# ╟─83af9228-6353-11eb-0e5b-4550ac55ca4f
# ╟─fb596dc6-4d41-11eb-1dbd-6707e4fa7778
# ╠═227d45a0-4d45-11eb-0cca-af99bc390097
# ╟─d4764dc0-7e81-11eb-29da-adbfa04c613b
# ╠═cfd60bf8-4d43-11eb-00b7-bd162061b954
# ╟─c25bfd94-7f7e-11eb-32ff-6fb869cd3b43
# ╠═5e3ae372-4d4a-11eb-3e76-e7b1545f3759
# ╟─cccb00f0-4d46-11eb-027b-ab6e07ce3ce5
# ╟─42eb4b3e-52ba-11eb-2178-11e1d2a887af
# ╟─cd98af32-4d4b-11eb-2ffb-edbe9a3c069b
# ╟─04b51758-52b7-11eb-10f9-f5be66cf0dec
# ╟─66d55490-7f7c-11eb-2d2d-77f9b4f7b184
# ╟─0442fbb8-52c0-11eb-06ea-01e68e330d5d
# ╠═3b2050da-52c1-11eb-3b89-1d5b6eb2cf40
# ╟─52ee864c-8445-11eb-15b0-47a0f97b6fec
# ╟─5fbcb6e6-52ca-11eb-3e8c-1bb7495dc15d
# ╟─1b612ec2-52c1-11eb-22aa-3b406bd64623
# ╟─2b0d264c-7f7f-11eb-2bf6-1119de8bbe96
# ╟─0a38c120-52c6-11eb-2ec5-e7780b3e11ec
# ╟─f5225d7a-5846-11eb-1497-c5d439899e6b
# ╟─8aa42c6e-6354-11eb-3c43-cb16327595c2
# ╟─9388aa8a-52c9-11eb-0dd8-3184bcfb93b2
# ╟─ec388b4a-52ca-11eb-097d-6760de18dd0e
# ╟─34baf426-7f7f-11eb-0cf0-bb0d1a7c28fd
# ╠═49f027da-5dce-11eb-3fff-0fd590112019
# ╠═672fef94-6351-11eb-0af1-652d5992e129
# ╟─18787dee-8446-11eb-2b9d-9967d7fe6d5c
# ╠═49571046-68c2-11eb-071e-2709f8e40e48
# ╟─e0ad3a7e-8447-11eb-2df2-3d52fffaab6b
# ╟─2c63765e-68c3-11eb-317c-d1603846ca9c
# ╟─7bb8f0e4-8448-11eb-2bd5-e9f94078860e
# ╟─04badb38-8448-11eb-2750-fde9b58547e4
# ╟─5114761e-84d0-11eb-094e-fde0d465d19e
# ╠═f9d0182e-8450-11eb-3f42-3df1cf54cf96
# ╠═521ebdb6-68c5-11eb-3bb2-8926b33ec780
# ╟─081ee4fc-84f4-11eb-3bad-a1e680d897b3
# ╟─2af54294-8451-11eb-29b9-dd400f6ceb74
# ╟─f0ecfbb6-84f3-11eb-0b02-27ffea69c7ca
# ╟─751bb036-844e-11eb-035b-6d62fe25bfce
# ╟─b185179e-8451-11eb-1877-593c6b4be750
# ╟─4d7c796a-84f4-11eb-19cf-dfd729ac8b98
# ╟─5b1d34d4-8451-11eb-15b5-1d45b1b3cb01
# ╟─2245ae6e-84f5-11eb-0bc9-61f05b3d6935
# ╟─b7a631d2-8454-11eb-3ff7-5b02d14ce2b9
# ╟─e6423e30-84f6-11eb-0c07-cdae8e894eb0
# ╟─c760edd0-8452-11eb-318b-9de3fd9409ae
# ╟─3ce10e94-8455-11eb-0083-3dea8a3ebc13