@@ -69,6 +69,78 @@ function emd2(μ, ν, C; kwargs...)
69
69
return pot. lp. emd2 (μ, ν, PyCall. PyReverseDims (permutedims (C)); kwargs... )
70
70
end
71
71
72
+ """
73
+ emd_1d(xsource, xtarget; kwargs...)
74
+
75
+ Compute the optimal transport plan for the Monge-Kantorovich problem with univariate
76
+ discrete measures with support `xsource` and `xtarget` as source and target marginals.
77
+
78
+ This function is a wrapper of the function
79
+ [`emd_1d`](https://pythonot.github.io/all.html#ot.emd_1d) in the Python Optimal Transport
80
+ package. Keyword arguments are listed in the documentation of the Python function.
81
+
82
+ # Examples
83
+
84
+ ```jldoctest
85
+ julia> xsource = [0.2, 0.5];
86
+
87
+ julia> xtarget = [0.8, 0.3];
88
+
89
+ julia> emd_1d(xsource, xtarget)
90
+ 2×2 Matrix{Float64}:
91
+ 0.0 0.5
92
+ 0.5 0.0
93
+
94
+ julia> histogram_source = [0.8, 0.2];
95
+
96
+ julia> histogram_target = [0.7, 0.3];
97
+
98
+ julia> emd_1d(xsource, xtarget; a=histogram_source, b=histogram_target)
99
+ 2×2 Matrix{Float64}:
100
+ 0.5 0.3
101
+ 0.2 0.0
102
+ ```
103
+
104
+ See also: [`emd`](@ref), [`emd2_1d`](@ref)
105
+ """
106
+ function emd_1d (xsource, xtarget; kwargs... )
107
+ return pot. lp. emd_1d (xsource, xtarget; kwargs... )
108
+ end
109
+
110
+ """
111
+ emd2_1d(xsource, xtarget; kwargs...)
112
+
113
+ Compute the optimal transport cost for the Monge-Kantorovich problem with univariate
114
+ discrete measures with support `xsource` and `xtarget` as source and target marginals.
115
+
116
+ This function is a wrapper of the function
117
+ [`emd2_1d`](https://pythonot.github.io/all.html#ot.emd2_1d) in the Python Optimal Transport
118
+ package. Keyword arguments are listed in the documentation of the Python function.
119
+
120
+ # Examples
121
+
122
+ ```jldoctest
123
+ julia> xsource = [0.2, 0.5];
124
+
125
+ julia> xtarget = [0.8, 0.3];
126
+
127
+ julia> round(emd2_1d(xsource, xtarget); sigdigits=6)
128
+ 0.05
129
+
130
+ julia> histogram_source = [0.8, 0.2];
131
+
132
+ julia> histogram_target = [0.7, 0.3];
133
+
134
+ julia> round(emd2_1d(xsource, xtarget; a=histogram_source, b=histogram_target); sigdigits=6)
135
+ 0.201
136
+ ```
137
+
138
+ See also: [`emd2`](@ref), [`emd2_1d`](@ref)
139
+ """
140
+ function emd2_1d (xsource, xtarget; kwargs... )
141
+ return pot. lp. emd2_1d (xsource, xtarget; kwargs... )
142
+ end
143
+
72
144
"""
73
145
sinkhorn(μ, ν, C, ε; kwargs...)
74
146
0 commit comments