@@ -524,23 +524,24 @@ end
524
524
"""
525
525
gemv!(tA, alpha, A, x, beta, y)
526
526
527
- Update the vector `y` as `alpha*A*x + beta*y` or `alpha*A'x + beta*y` according to `tA`
528
- (transpose `A`). `alpha` and `beta` are scalars. Returns the updated `y`.
527
+ Update the vector `y` as `alpha*A*x + beta*y` or `alpha*A'x + beta*y`
528
+ according to [`tA`](@ref stdlib-blas-trans).
529
+ `alpha` and `beta` are scalars. Returns the updated `y`.
529
530
"""
530
531
gemv!
531
532
532
533
"""
533
534
gemv(tA, alpha, A, x)
534
535
535
- Returns `alpha*A*x` or `alpha*A'x` according to `tA` (transpose `A` ).
536
+ Returns `alpha*A*x` or `alpha*A'x` according to [ `tA`](@ref stdlib-blas-trans ).
536
537
`alpha` is a scalar.
537
538
"""
538
539
gemv (tA, alpha, A, x)
539
540
540
541
"""
541
542
gemv(tA, A, x)
542
543
543
- Returns `A*x` or `A'x` according to `tA` (transpose `A` ).
544
+ Returns `A*x` or `A'x` according to [ `tA`](@ref stdlib-blas-trans ).
544
545
"""
545
546
gemv (tA, A, x)
546
547
@@ -549,16 +550,16 @@ gemv(tA, A, x)
549
550
"""
550
551
gbmv!(trans, m, kl, ku, alpha, A, x, beta, y)
551
552
552
- Update vector `y` as `alpha*A*x + beta*y` or `alpha*A'*x + beta*y` according to `trans` (`'N'` (meaning not transposed)
553
- or `'T'` (meaning transposed)). The matrix `A` is a general band matrix of dimension `m` by `size(A,2)` with `kl`
553
+ Update vector `y` as `alpha*A*x + beta*y` or `alpha*A'*x + beta*y` according to [ `trans`](@ref stdlib-blas-trans).
554
+ The matrix `A` is a general band matrix of dimension `m` by `size(A,2)` with `kl`
554
555
sub-diagonals and `ku` super-diagonals. `alpha` and `beta` are scalars. Returns the updated `y`.
555
556
"""
556
557
function gbmv! end
557
558
558
559
"""
559
560
gbmv(trans, m, kl, ku, alpha, A, x, beta, y)
560
561
561
- Returns `alpha*A*x` or `alpha*A'*x` according to `trans` (`'N'` (meaning not transposed) or `'T'` (meaning transposed) ).
562
+ Returns `alpha*A*x` or `alpha*A'*x` according to [ `trans`](@ref stdlib-blas-trans ).
562
563
The matrix `A` is a general band matrix of dimension `m` by `size(A,2)` with `kl` sub-diagonals and `ku`
563
564
super-diagonals. `alpha` and `beta` are scalars.
564
565
"""
603
604
"""
604
605
symv!(ul, alpha, A, x, beta, y)
605
606
606
- Update the vector `y` as `alpha*A*x + beta*y`. `A` is assumed to be symmetric. Only the `ul`
607
- triangle of `A` is used. `alpha` and `beta` are scalars. Returns the updated `y`.
607
+ Update the vector `y` as `alpha*A*x + beta*y`. `A` is assumed to be symmetric.
608
+ Only the [`ul`](@ref stdlib-blas-uplo) triangle of `A` is used.
609
+ `alpha` and `beta` are scalars. Returns the updated `y`.
608
610
"""
609
611
function symv! end
610
612
654
656
symv(ul, alpha, A, x)
655
657
656
658
Returns `alpha*A*x`. `A` is assumed to be symmetric.
657
- Only the `ul` (`'U'` for upper, `'L'` for lower ) triangle of `A` is used.
659
+ Only the [ `ul`](@ref stdlib-blas-uplo ) triangle of `A` is used.
658
660
`alpha` is a scalar.
659
661
"""
660
662
symv (ul, alpha, A, x)
@@ -663,7 +665,7 @@ symv(ul, alpha, A, x)
663
665
symv(ul, A, x)
664
666
665
667
Returns `A*x`. `A` is assumed to be symmetric.
666
- Only the `ul` (`'U'` for upper, `'L'` for lower ) triangle of `A` is used.
668
+ Only the [ `ul`](@ref stdlib-blas-uplo ) triangle of `A` is used.
667
669
"""
668
670
symv (ul, A, x)
669
671
739
741
740
742
Returns `alpha*A*x` where `A` is a symmetric band matrix of order `size(A,2)` with `k`
741
743
super-diagonals stored in the argument `A`.
742
- Only the `uplo` (`'U'` for upper, `'L'` for lower ) triangle of `A` is used.
744
+ Only the [ `uplo`](@ref stdlib-blas-uplo ) triangle of `A` is used.
743
745
"""
744
746
sbmv (uplo, k, alpha, A, x)
745
747
@@ -748,7 +750,7 @@ sbmv(uplo, k, alpha, A, x)
748
750
749
751
Returns `A*x` where `A` is a symmetric band matrix of order `size(A,2)` with `k`
750
752
super-diagonals stored in the argument `A`.
751
- Only the `uplo` (`'U'` for upper, `'L'` for lower ) triangle of `A` is used.
753
+ Only the [ `uplo`](@ref stdlib-blas-uplo ) triangle of `A` is used.
752
754
"""
753
755
sbmv (uplo, k, A, x)
754
756
@@ -759,7 +761,7 @@ Update vector `y` as `alpha*A*x + beta*y` where `A` is a a symmetric band matrix
759
761
`size(A,2)` with `k` super-diagonals stored in the argument `A`. The storage layout for `A`
760
762
is described the reference BLAS module, level-2 BLAS at
761
763
<http://www.netlib.org/lapack/explore-html/>.
762
- Only the `uplo` (`'U'` for upper, `'L'` for lower ) triangle of `A` is used.
764
+ Only the [ `uplo`](@ref stdlib-blas-uplo ) triangle of `A` is used.
763
765
764
766
Returns the updated `y`.
765
767
"""
@@ -801,26 +803,20 @@ end
801
803
"""
802
804
trmv(ul, tA, dA, A, b)
803
805
804
- Returns `op(A)*b`, where `op` is determined by `tA`
805
- (`'N'` for identity, `'T'` for transpose `A`, and `'C'` for conjugate
806
- transpose `A`). Only the `ul` triangle (`'U'` for upper, `'L'`
807
- for lower) of `A` is used.
808
- The diagonal is assumed to be all ones if `dA` is `'U'`, or the
809
- diagonal values are read from
810
- `A` if `dA` is `'N'`.
806
+ Returns `op(A)*b`, where `op` is determined by [`tA`](@ref stdlib-blas-trans).
807
+ Only the [`ul`](@ref stdlib-blas-uplo) triangle of `A` is used.
808
+ [`dA`](@ref stdlib-blas-diag) determines if the diagonal values are read or
809
+ are assumed to be all ones.
811
810
"""
812
811
function trmv end
813
812
814
813
"""
815
814
trmv!(ul, tA, dA, A, b)
816
815
817
- Returns `op(A)*b`, where `op` is determined by `tA`
818
- (`'N'` for identity, `'T'` for transpose `A`, and `'C'` for conjugate
819
- transpose `A`). Only the `ul` triangle (`'U'` for upper, `'L'`
820
- for lower) of `A` is used.
821
- The diagonal is assumed to be all ones if `dA` is `'U'`, or the
822
- diagonal values are read from
823
- `A` if `dA` is `'N'`.
816
+ Returns `op(A)*b`, where `op` is determined by [`tA`](@ref stdlib-blas-trans).
817
+ Only the [`ul`](@ref stdlib-blas-uplo) triangle of `A` is used.
818
+ [`dA`](@ref stdlib-blas-diag) determines if the diagonal values are read or
819
+ are assumed to be all ones.
824
820
The multiplication occurs in-place on `b`.
825
821
"""
826
822
function trmv! end
@@ -860,21 +856,20 @@ end
860
856
trsv!(ul, tA, dA, A, b)
861
857
862
858
Overwrite `b` with the solution to `A*x = b` or one of the other two variants determined by
863
- `tA` (transpose `A` if `'T'`, `A` if `'N'`, conjugate-transpose if `'C'`)
864
- and `ul` (triangle of `A` used, `'U'` for upper, `'L`' for lower).
865
- The diagonal is assumed to be all ones if `dA` is `'U'`, or the diagonal values are read from
866
- `A` if `dA` is `'N'`.
859
+ [`tA`](@ref stdlib-blas-trans) and [`ul`](@ref stdlib-blas-uplo).
860
+ [`dA`](@ref stdlib-blas-diag) determines if the diagonal values are read or
861
+ are assumed to be all ones.
867
862
Returns the updated `b`.
868
863
"""
869
864
function trsv! end
870
865
871
866
"""
872
867
trsv(ul, tA, dA, A, b)
873
868
874
- Returns the solution to `A*x = b` or one of the other two variants determined by `tA`
875
- (transpose `A` ) and `ul` (triangle of `A` is used.) `dA` indicates if `A` is unit-triangular
876
- (the diagonal is assumed to be all ones if `dA` is `'U'`, or the diagonal values are read from
877
- `A` if `dA` is `'N'`) .
869
+ Returns the solution to `A*x = b` or one of the other two variants determined by
870
+ [`tA`](@ref stdlib-blas-trans ) and [ `ul`](@ref stdlib-blas-uplo).
871
+ [ `dA`](@ref stdlib-blas-diag) determines if the diagonal values are read or
872
+ are assumed to be all ones .
878
873
"""
879
874
function trsv end
880
875
943
938
"""
944
939
syr!(uplo, alpha, x, A)
945
940
946
- Rank-1 update of the symmetric matrix `A` with vector `x` as `alpha*x*x.' + A`. When `uplo`
947
- is `'U'` the upper triangle of `A` is updated (`'L'` for lower triangle) . Returns `A`.
941
+ Rank-1 update of the symmetric matrix `A` with vector `x` as `alpha*x*x.' + A`.
942
+ [`uplo`](@ref stdlib-blas-uplo) controls which triangle of `A` is updated. Returns `A`.
948
943
"""
949
944
function syr! end
950
945
974
969
her!(uplo, alpha, x, A)
975
970
976
971
Methods for complex arrays only. Rank-1 update of the Hermitian matrix `A` with vector `x`
977
- as `alpha*x*x' + A`. When `uplo` is `'U'` the upper triangle of `A` is updated (`'L'` for lower
978
- triangle) . Returns `A`.
972
+ as `alpha*x*x' + A`.
973
+ [`uplo`](@ref stdlib-blas-uplo) controls which triangle of `A` is updated . Returns `A`.
979
974
"""
980
975
function her! end
981
976
1003
998
"""
1004
999
gemm!(tA, tB, alpha, A, B, beta, C)
1005
1000
1006
- Update `C` as `alpha*A*B + beta*C` or the other three variants according to `tA` (transpose
1007
- `A` ) and `tB`. Returns the updated `C`.
1001
+ Update `C` as `alpha*A*B + beta*C` or the other three variants according to
1002
+ [`tA`](@ref stdlib-blas-trans ) and `tB`. Returns the updated `C`.
1008
1003
"""
1009
1004
function gemm! end
1010
1005
@@ -1055,14 +1050,14 @@ end
1055
1050
"""
1056
1051
gemm(tA, tB, alpha, A, B)
1057
1052
1058
- Returns `alpha*A*B` or the other three variants according to `tA` (transpose `A` ) and `tB`.
1053
+ Returns `alpha*A*B` or the other three variants according to [ `tA`](@ref stdlib-blas-trans ) and `tB`.
1059
1054
"""
1060
1055
gemm (tA, tB, alpha, A, B)
1061
1056
1062
1057
"""
1063
1058
gemm(tA, tB, A, B)
1064
1059
1065
- Returns `A*B` or the other three variants according to `tA` (transpose `A` ) and `tB`.
1060
+ Returns `A*B` or the other three variants according to [ `tA`](@ref stdlib-blas-trans ) and `tB`.
1066
1061
"""
1067
1062
gemm (tA, tB, A, B)
1068
1063
@@ -1110,31 +1105,26 @@ end
1110
1105
"""
1111
1106
symm(side, ul, alpha, A, B)
1112
1107
1113
- Returns `alpha*A*B` or `alpha*B*A` according to `side`. `A` is assumed to be symmetric. Only
1114
- the `ul` triangle (`'U'` for upper, `'L'` for lower) of `A` is used.
1108
+ Returns `alpha*A*B` or `alpha*B*A` according to [`side`](@ref stdlib-blas-side).
1109
+ `A` is assumed to be symmetric. Only
1110
+ the [`ul`](@ref stdlib-blas-uplo) triangle of `A` is used.
1115
1111
"""
1116
1112
symm (side, ul, alpha, A, B)
1117
1113
1118
1114
"""
1119
1115
symm(side, ul, A, B)
1120
1116
1121
- Returns `A*B` or `B*A` according to `side`. `A` is assumed to be symmetric. Only the `ul`
1122
- triangle (`'U'` for upper, `'L'` for lower) of `A` is used.
1117
+ Returns `A*B` or `B*A` according to [`side`](@ref stdlib-blas-side).
1118
+ `A` is assumed to be symmetric. Only the [`ul`](@ref stdlib-blas-uplo)
1119
+ triangle of `A` is used.
1123
1120
"""
1124
1121
symm (side, ul, A, B)
1125
1122
1126
- """
1127
- symm(tA, tB, alpha, A, B)
1128
-
1129
- Returns `alpha*A*B` or the other three variants according to `tA` (transpose `A`) and `tB`.
1130
- """
1131
- symm (tA:: Char , tB:: Char , alpha, A, B)
1132
-
1133
1123
"""
1134
1124
symm!(side, ul, alpha, A, B, beta, C)
1135
1125
1136
- Update `C` as `alpha*A*B + beta*C` or `alpha*B*A + beta*C` according to `side`. `A` is
1137
- assumed to be symmetric. Only the `ul` (`'U'` for upper, `'L'` for lower ) triangle of
1126
+ Update `C` as `alpha*A*B + beta*C` or `alpha*B*A + beta*C` according to [ `side`](@ref stdlib-blas-side).
1127
+ `A` is assumed to be symmetric. Only the [ `ul`](@ref stdlib-blas-uplo ) triangle of
1138
1128
`A` is used. Returns the updated `C`.
1139
1129
"""
1140
1130
symm!
@@ -1183,16 +1173,18 @@ end
1183
1173
syrk!(uplo, trans, alpha, A, beta, C)
1184
1174
1185
1175
Rank-k update of the symmetric matrix `C` as `alpha*A*A.' + beta*C` or `alpha*A.'*A +
1186
- beta*C` according to whether `trans` is `'N'` or `'T'`. When `uplo` is `'U'` the upper triangle of
1187
- `C` is updated (`'L'` for lower triangle) . Returns `C`.
1176
+ beta*C` according to [ `trans`](@ref stdlib-blas-trans).
1177
+ Only the [`uplo`](@ref stdlib-blas-uplo) triangle of `C` is used . Returns `C`.
1188
1178
"""
1189
1179
function syrk! end
1190
1180
1191
1181
"""
1192
1182
syrk(uplo, trans, alpha, A)
1193
1183
1194
- Returns either the upper triangle or the lower triangle, according to `uplo` (`'U'` or `'L'`),
1195
- of `alpha*A*A.'` or `alpha*A.'*A`, according to `trans` (`'N'` or `'T'`).
1184
+ Returns either the upper triangle or the lower triangle of `A`,
1185
+ according to [`uplo`](@ref stdlib-blas-uplo),
1186
+ of `alpha*A*A.'` or `alpha*A.'*A`,
1187
+ according to [`trans`](@ref stdlib-blas-trans).
1196
1188
"""
1197
1189
function syrk end
1198
1190
@@ -1237,17 +1229,18 @@ syrk(uplo::Char, trans::Char, A::StridedVecOrMat) = syrk(uplo, trans, one(eltype
1237
1229
herk!(uplo, trans, alpha, A, beta, C)
1238
1230
1239
1231
Methods for complex arrays only. Rank-k update of the Hermitian matrix `C` as `alpha*A*A' +
1240
- beta*C` or `alpha*A'*A + beta*C` according to whether `trans` is `'N'` or `'T'`. When `uplo` is
1241
- `'U'` the upper triangle of `C` is updated (`'L'` for lower triangle). Returns `C`.
1232
+ beta*C` or `alpha*A'*A + beta*C` according to [`trans`](@ref stdlib-blas-trans).
1233
+ Only the [`uplo`](@ref stdlib-blas-uplo) triangle of `C` is updated.
1234
+ Returns `C`.
1242
1235
"""
1243
1236
function herk! end
1244
1237
1245
1238
"""
1246
1239
herk(uplo, trans, alpha, A)
1247
1240
1248
- Methods for complex arrays only. Returns either the upper triangle or the lower triangle,
1249
- according to `uplo` ('U' or 'L'), of `alpha*A*A'` or `alpha*A'*A`, according to `trans` ('N'
1250
- or 'T' ).
1241
+ Methods for complex arrays only.
1242
+ Returns the [ `uplo`](@ref stdlib-blas-uplo) triangle of `alpha*A*A'` or `alpha*A'*A`,
1243
+ according to [`trans`](@ref stdlib-blas-trans ).
1251
1244
"""
1252
1245
function herk end
1253
1246
@@ -1368,35 +1361,34 @@ end
1368
1361
"""
1369
1362
trmm!(side, ul, tA, dA, alpha, A, B)
1370
1363
1371
- Update `B` as `alpha*A*B` or one of the other three variants determined by `side` (`'L'` for `A` on
1372
- left, `'R'` for `A` on right ) and `tA` (transpose `A`). Only the `ul` (`'U'` for upper, `'L'` for lower)
1373
- triangle of `A` is used.
1374
- The diagonal is assumed to be all ones if `dA` is `'U'`, or the diagonal values are read from
1375
- `A` if `dA` is `'N'` .
1364
+ Update `B` as `alpha*A*B` or one of the other three variants determined by
1365
+ [`side`](@ref stdlib-blas-side ) and [ `tA`](@ref stdlib-blas-trans).
1366
+ Only the [`ul`](@ref stdlib-blas-uplo) triangle of `A` is used.
1367
+ [ `dA`](@ref stdlib-blas-diag) determines if the diagonal values are read or
1368
+ are assumed to be all ones .
1376
1369
Returns the updated `B`.
1377
1370
"""
1378
1371
function trmm! end
1379
1372
1380
1373
"""
1381
1374
trmm(side, ul, tA, dA, alpha, A, B)
1382
1375
1383
- Returns `alpha*A*B` or one of the other three variants determined by `side` (`'L'` for `A` on left,
1384
- `'R'` for `A` on right ) and `tA` (transpose `A` ).
1385
- Only the `ul` (`'U'` for upper, `'L'` for lower ) triangle of `A` is used.
1386
- The diagonal is assumed to be all ones if `dA` is `'U'`, or the diagonal values are read from
1387
- `A` if `dA` is `'N'` .
1376
+ Returns `alpha*A*B` or one of the other three variants determined by
1377
+ [`side`](@ref stdlib-blas-side ) and [ `tA`](@ref stdlib-blas-trans ).
1378
+ Only the [ `ul`](@ref stdlib-blas-uplo ) triangle of `A` is used.
1379
+ [ `dA`](@ref stdlib-blas-diag) determines if the diagonal values are read or
1380
+ are assumed to be all ones .
1388
1381
"""
1389
1382
function trmm end
1390
1383
1391
1384
"""
1392
1385
trsm!(side, ul, tA, dA, alpha, A, B)
1393
1386
1394
1387
Overwrite `B` with the solution to `A*X = alpha*B` or one of the other three variants
1395
- determined by `side` (`'L'` for `A` on left of `X`, `'R'` for `A` on right of `X`)
1396
- and `tA` (transpose `A`).
1397
- Only the `ul` (`'U'` for upper, `'L'` for lower) triangle of `A` is used.
1398
- The diagonal is assumed to be all ones if `dA` is `'U'`, or the diagonal values are read from
1399
- `A` if `dA` is `'N'`.
1388
+ determined by [`side`](@ref stdlib-blas-side) and [`tA`](@ref stdlib-blas-trans).
1389
+ Only the [`ul`](@ref stdlib-blas-uplo) triangle of `A` is used.
1390
+ [`dA`](@ref stdlib-blas-diag) determines if the diagonal values are read or
1391
+ are assumed to be all ones.
1400
1392
Returns the updated `B`.
1401
1393
"""
1402
1394
function trsm! end
@@ -1405,11 +1397,10 @@ function trsm! end
1405
1397
trsm(side, ul, tA, dA, alpha, A, B)
1406
1398
1407
1399
Returns the solution to `A*X = alpha*B` or one of the other three variants determined by
1408
- determined by `side` (`'L'` for `A` on left of `X`, `'R'` for `A` on right of `X`)
1409
- and `tA` (transpose `A`).
1410
- Only the `ul` (`'U'` for upper, `'L'` for lower) triangle of `A` is used.
1411
- The diagonal is assumed to be all ones if `dA` is `'U'`, or the diagonal values are read from
1412
- `A` if `dA` is `'N'`.
1400
+ determined by [`side`](@ref stdlib-blas-side) and [`tA`](@ref stdlib-blas-trans).
1401
+ Only the [`ul`](@ref stdlib-blas-uplo) triangle of `A` is used.
1402
+ [`dA`](@ref stdlib-blas-diag) determines if the diagonal values are read or
1403
+ are assumed to be all ones.
1413
1404
"""
1414
1405
function trsm end
1415
1406
0 commit comments