|
2 | 2 |
|
3 | 3 | using Base.Test
|
4 | 4 |
|
5 |
| -debug = false |
6 |
| - |
7 |
| -debug && println("eigs") |
8 |
| -let |
9 |
| - srand(1234) |
10 |
| - local n,a,asym,b,bsym,d,v |
11 |
| - n = 10 |
12 |
| - areal = sprandn(n,n,0.4) |
13 |
| - breal = sprandn(n,n,0.4) |
14 |
| - acmplx = complex(sprandn(n,n,0.4), sprandn(n,n,0.4)) |
15 |
| - bcmplx = complex(sprandn(n,n,0.4), sprandn(n,n,0.4)) |
16 |
| - |
17 |
| - testtol = 1e-6 |
18 |
| - |
19 |
| - for elty in (Float64, Complex128) |
20 |
| - if elty == Complex64 || elty == Complex128 |
21 |
| - a = acmplx |
22 |
| - b = bcmplx |
23 |
| - else |
24 |
| - a = areal |
25 |
| - b = breal |
26 |
| - end |
27 |
| - a = convert(SparseMatrixCSC{elty}, a) |
28 |
| - asym = a' + a # symmetric indefinite |
29 |
| - apd = a'*a # symmetric positive-definite |
30 |
| - |
31 |
| - b = convert(SparseMatrixCSC{elty}, b) |
32 |
| - bsym = b' + b |
33 |
| - bpd = b'*b |
34 |
| - |
35 |
| - (d,v) = eigs(a, nev=3) |
36 |
| - @test a*v[:,2] ≈ d[2]*v[:,2] |
37 |
| - @test norm(v) > testtol # eigenvectors cannot be null vectors |
38 |
| - # (d,v) = eigs(a, b, nev=3, tol=1e-8) # not handled yet |
39 |
| - # @test_approx_eq_eps a*v[:,2] d[2]*b*v[:,2] testtol |
40 |
| - # @test norm(v) > testtol # eigenvectors cannot be null vectors |
41 |
| - |
42 |
| - (d,v) = eigs(asym, nev=3) |
43 |
| - @test asym*v[:,1] ≈ d[1]*v[:,1] |
44 |
| - @test eigs(asym; nev=1, sigma=d[3])[1][1] ≈ d[3] |
45 |
| - @test norm(v) > testtol # eigenvectors cannot be null vectors |
46 |
| - |
47 |
| - (d,v) = eigs(apd, nev=3) |
48 |
| - @test apd*v[:,3] ≈ d[3]*v[:,3] |
49 |
| - @test eigs(apd; nev=1, sigma=d[3])[1][1] ≈ d[3] |
50 |
| - |
51 |
| - (d,v) = eigs(apd, bpd, nev=3, tol=1e-8) |
52 |
| - @test_approx_eq_eps apd*v[:,2] d[2]*bpd*v[:,2] testtol |
53 |
| - @test norm(v) > testtol # eigenvectors cannot be null vectors |
54 |
| - |
55 |
| - # test (shift-and-)invert mode |
56 |
| - (d,v) = eigs(apd, nev=3, sigma=0) |
57 |
| - @test apd*v[:,3] ≈ d[3]*v[:,3] |
58 |
| - @test norm(v) > testtol # eigenvectors cannot be null vectors |
59 |
| - |
60 |
| - (d,v) = eigs(apd, bpd, nev=3, sigma=0, tol=1e-8) |
61 |
| - @test_approx_eq_eps apd*v[:,1] d[1]*bpd*v[:,1] testtol |
62 |
| - @test norm(v) > testtol # eigenvectors cannot be null vectors |
63 |
| - |
64 |
| - @test_throws ArgumentError eigs(rand(elty,2,2)) |
65 |
| - @test_throws ArgumentError eigs(a, nev=-1) |
66 |
| - @test_throws ArgumentError eigs(a, which=:Z) |
67 |
| - @test_throws ArgumentError eigs(a, which=:BE) |
68 |
| - @test_throws DimensionMismatch eigs(a, v0=zeros(elty,n+2)) |
69 |
| - @test_throws ArgumentError eigs(a, v0=zeros(Int,n)) |
70 |
| - if elty == Float64 |
71 |
| - @test_throws ArgumentError eigs(a+a.',which=:SI) |
72 |
| - @test_throws ArgumentError eigs(a+a.',which=:LI) |
73 |
| - @test_throws ArgumentError eigs(a,sigma=rand(Complex64)) |
| 5 | +@testset "eigs" begin |
| 6 | + let |
| 7 | + srand(1234) |
| 8 | + local n,a,asym,b,bsym,d,v |
| 9 | + n = 10 |
| 10 | + areal = sprandn(n,n,0.4) |
| 11 | + breal = sprandn(n,n,0.4) |
| 12 | + acmplx = complex(sprandn(n,n,0.4), sprandn(n,n,0.4)) |
| 13 | + bcmplx = complex(sprandn(n,n,0.4), sprandn(n,n,0.4)) |
| 14 | + |
| 15 | + testtol = 1e-6 |
| 16 | + |
| 17 | + @testset for elty in (Float64, Complex128) |
| 18 | + if elty == Complex64 || elty == Complex128 |
| 19 | + a = acmplx |
| 20 | + b = bcmplx |
| 21 | + else |
| 22 | + a = areal |
| 23 | + b = breal |
| 24 | + end |
| 25 | + a = convert(SparseMatrixCSC{elty}, a) |
| 26 | + asym = a' + a # symmetric indefinite |
| 27 | + apd = a'*a # symmetric positive-definite |
| 28 | + |
| 29 | + b = convert(SparseMatrixCSC{elty}, b) |
| 30 | + bsym = b' + b |
| 31 | + bpd = b'*b |
| 32 | + |
| 33 | + (d,v) = eigs(a, nev=3) |
| 34 | + @test a*v[:,2] ≈ d[2]*v[:,2] |
| 35 | + @test norm(v) > testtol # eigenvectors cannot be null vectors |
| 36 | + # (d,v) = eigs(a, b, nev=3, tol=1e-8) # not handled yet |
| 37 | + # @test_approx_eq_eps a*v[:,2] d[2]*b*v[:,2] testtol |
| 38 | + # @test norm(v) > testtol # eigenvectors cannot be null vectors |
| 39 | + |
| 40 | + (d,v) = eigs(asym, nev=3) |
| 41 | + @test asym*v[:,1] ≈ d[1]*v[:,1] |
| 42 | + @test eigs(asym; nev=1, sigma=d[3])[1][1] ≈ d[3] |
| 43 | + @test norm(v) > testtol # eigenvectors cannot be null vectors |
| 44 | + |
| 45 | + (d,v) = eigs(apd, nev=3) |
| 46 | + @test apd*v[:,3] ≈ d[3]*v[:,3] |
| 47 | + @test eigs(apd; nev=1, sigma=d[3])[1][1] ≈ d[3] |
| 48 | + |
| 49 | + (d,v) = eigs(apd, bpd, nev=3, tol=1e-8) |
| 50 | + @test_approx_eq_eps apd*v[:,2] d[2]*bpd*v[:,2] testtol |
| 51 | + @test norm(v) > testtol # eigenvectors cannot be null vectors |
| 52 | + |
| 53 | + @testset "(shift-and-)invert mode" begin |
| 54 | + (d,v) = eigs(apd, nev=3, sigma=0) |
| 55 | + @test apd*v[:,3] ≈ d[3]*v[:,3] |
| 56 | + @test norm(v) > testtol # eigenvectors cannot be null vectors |
| 57 | + |
| 58 | + (d,v) = eigs(apd, bpd, nev=3, sigma=0, tol=1e-8) |
| 59 | + @test_approx_eq_eps apd*v[:,1] d[1]*bpd*v[:,1] testtol |
| 60 | + @test norm(v) > testtol # eigenvectors cannot be null vectors |
| 61 | + end |
| 62 | + |
| 63 | + @testset "ArgumentErrors" begin |
| 64 | + @test_throws ArgumentError eigs(rand(elty,2,2)) |
| 65 | + @test_throws ArgumentError eigs(a, nev=-1) |
| 66 | + @test_throws ArgumentError eigs(a, which=:Z) |
| 67 | + @test_throws ArgumentError eigs(a, which=:BE) |
| 68 | + @test_throws DimensionMismatch eigs(a, v0=zeros(elty,n+2)) |
| 69 | + @test_throws ArgumentError eigs(a, v0=zeros(Int,n)) |
| 70 | + if elty == Float64 |
| 71 | + @test_throws ArgumentError eigs(a+a.',which=:SI) |
| 72 | + @test_throws ArgumentError eigs(a+a.',which=:LI) |
| 73 | + @test_throws ArgumentError eigs(a,sigma=rand(Complex64)) |
| 74 | + end |
| 75 | + end |
74 | 76 | end
|
75 | 77 | end
|
76 | 78 | end
|
@@ -150,87 +152,94 @@ let
|
150 | 152 | @test eigs(speye(50), nev=10)[1] ≈ ones(10) #Issue 4246
|
151 | 153 | end
|
152 | 154 |
|
153 |
| -debug && println("real svds") |
154 |
| -let # svds test |
155 |
| - A = sparse([1, 1, 2, 3, 4], [2, 1, 1, 3, 1], [2.0, -1.0, 6.1, 7.0, 1.5]) |
156 |
| - S1 = svds(A, nsv = 2) |
157 |
| - S2 = svd(full(A)) |
158 |
| - |
159 |
| - ## singular values match: |
160 |
| - @test S1[1][:S] ≈ S2[2][1:2] |
161 |
| - |
162 |
| - ## 1st left singular vector |
163 |
| - s1_left = sign(S1[1][:U][3,1]) * S1[1][:U][:,1] |
164 |
| - s2_left = sign(S2[1][3,1]) * S2[1][:,1] |
165 |
| - @test s1_left ≈ s2_left |
166 |
| - |
167 |
| - ## 1st right singular vector |
168 |
| - s1_right = sign(S1[1][:Vt][3,1]) * S1[1][:Vt][:,1] |
169 |
| - s2_right = sign(S2[3][3,1]) * S2[3][:,1] |
170 |
| - @test s1_right ≈ s2_right |
171 |
| - |
172 |
| - #10329 |
173 |
| - debug && println("Issue 10329") |
174 |
| - B = sparse(diagm([1.0, 2.0, 34.0, 5.0, 6.0])) |
175 |
| - S3 = svds(B, ritzvec=false, nsv=2) |
176 |
| - @test S3[1][:S] ≈ [34.0, 6.0] |
177 |
| - S4 = svds(B, nsv=2) |
178 |
| - @test S4[1][:S] ≈ [34.0, 6.0] |
179 |
| - |
180 |
| - ## test passing guess for Krylov vectors |
181 |
| - S1 = svds(A, nsv = 2, u0=rand(eltype(A),size(A,1))) |
182 |
| - @test S1[1][:S] ≈ S2[2][1:2] |
183 |
| - S1 = svds(A, nsv = 2, v0=rand(eltype(A),size(A,2))) |
184 |
| - @test S1[1][:S] ≈ S2[2][1:2] |
185 |
| - S1 = svds(A, nsv = 2, u0=rand(eltype(A),size(A,1)), v0=rand(eltype(A),size(A,2))) |
186 |
| - @test S1[1][:S] ≈ S2[2][1:2] |
187 |
| - |
188 |
| - @test_throws ArgumentError svds(A,nsv=0) |
189 |
| - @test_throws ArgumentError svds(A,nsv=20) |
190 |
| - @test_throws DimensionMismatch svds(A,nsv=2,u0=rand(size(A,1)+1)) |
191 |
| - @test_throws DimensionMismatch svds(A,nsv=2,v0=rand(size(A,2)+1)) |
| 155 | +@testset "real svds" begin |
| 156 | + let # svds test |
| 157 | + A = sparse([1, 1, 2, 3, 4], [2, 1, 1, 3, 1], [2.0, -1.0, 6.1, 7.0, 1.5]) |
| 158 | + S1 = svds(A, nsv = 2) |
| 159 | + S2 = svd(full(A)) |
| 160 | + |
| 161 | + ## singular values match: |
| 162 | + @test S1[1][:S] ≈ S2[2][1:2] |
| 163 | + @testset "singular vectors" begin |
| 164 | + ## 1st left singular vector |
| 165 | + s1_left = sign(S1[1][:U][3,1]) * S1[1][:U][:,1] |
| 166 | + s2_left = sign(S2[1][3,1]) * S2[1][:,1] |
| 167 | + @test s1_left ≈ s2_left |
| 168 | + |
| 169 | + ## 1st right singular vector |
| 170 | + s1_right = sign(S1[1][:Vt][3,1]) * S1[1][:Vt][:,1] |
| 171 | + s2_right = sign(S2[3][3,1]) * S2[3][:,1] |
| 172 | + @test s1_right ≈ s2_right |
| 173 | + end |
| 174 | + # Issue number 10329 |
| 175 | + # Ensure singular values from svds are in |
| 176 | + # the correct order |
| 177 | + @testset "singular values ordered correctly" begin |
| 178 | + B = sparse(diagm([1.0, 2.0, 34.0, 5.0, 6.0])) |
| 179 | + S3 = svds(B, ritzvec=false, nsv=2) |
| 180 | + @test S3[1][:S] ≈ [34.0, 6.0] |
| 181 | + S4 = svds(B, nsv=2) |
| 182 | + @test S4[1][:S] ≈ [34.0, 6.0] |
| 183 | + end |
| 184 | + @testset "passing guess for Krylov vectors" begin |
| 185 | + S1 = svds(A, nsv = 2, u0=rand(eltype(A),size(A,1))) |
| 186 | + @test S1[1][:S] ≈ S2[2][1:2] |
| 187 | + S1 = svds(A, nsv = 2, v0=rand(eltype(A),size(A,2))) |
| 188 | + @test S1[1][:S] ≈ S2[2][1:2] |
| 189 | + S1 = svds(A, nsv = 2, u0=rand(eltype(A),size(A,1)), v0=rand(eltype(A),size(A,2))) |
| 190 | + @test S1[1][:S] ≈ S2[2][1:2] |
| 191 | + end |
| 192 | + |
| 193 | + @test_throws ArgumentError svds(A,nsv=0) |
| 194 | + @test_throws ArgumentError svds(A,nsv=20) |
| 195 | + @test_throws DimensionMismatch svds(A,nsv=2,u0=rand(size(A,1)+1)) |
| 196 | + @test_throws DimensionMismatch svds(A,nsv=2,v0=rand(size(A,2)+1)) |
| 197 | + end |
192 | 198 | end
|
193 | 199 |
|
194 |
| -debug && println("complex svds") |
195 |
| -let # complex svds test |
196 |
| - A = sparse([1, 1, 2, 3, 4], [2, 1, 1, 3, 1], exp.(im*[2.0:2:10;])) |
197 |
| - S1 = svds(A, nsv = 2) |
198 |
| - S2 = svd(full(A)) |
199 |
| - |
200 |
| - ## singular values match: |
201 |
| - @test S1[1][:S] ≈ S2[2][1:2] |
202 |
| - |
203 |
| - ## left singular vectors |
204 |
| - s1_left = abs.(S1[1][:U][:,1:2]) |
205 |
| - s2_left = abs.(S2[1][:,1:2]) |
206 |
| - @test s1_left ≈ s2_left |
207 |
| - |
208 |
| - ## right singular vectors |
209 |
| - s1_right = abs.(S1[1][:Vt][:,1:2]) |
210 |
| - s2_right = abs.(S2[3][:,1:2]) |
211 |
| - @test s1_right ≈ s2_right |
212 |
| - |
213 |
| - ## test passing guess for Krylov vectors |
214 |
| - S1 = svds(A, nsv = 2, u0=rand(eltype(A),size(A,1))) |
215 |
| - @test S1[1][:S] ≈ S2[2][1:2] |
216 |
| - S1 = svds(A, nsv = 2, v0=rand(eltype(A),size(A,2))) |
217 |
| - @test S1[1][:S] ≈ S2[2][1:2] |
218 |
| - S1 = svds(A, nsv = 2, u0=rand(eltype(A),size(A,1)), v0=rand(eltype(A),size(A,2))) |
219 |
| - @test S1[1][:S] ≈ S2[2][1:2] |
220 |
| - |
221 |
| - @test_throws ArgumentError svds(A,nsv=0) |
222 |
| - @test_throws ArgumentError svds(A,nsv=20) |
223 |
| - @test_throws DimensionMismatch svds(A,nsv=2,u0=complex(rand(size(A,1)+1))) |
224 |
| - @test_throws DimensionMismatch svds(A,nsv=2,v0=complex(rand(size(A,2)+1))) |
| 200 | +@testset "complex svds" begin |
| 201 | + let # complex svds test |
| 202 | + A = sparse([1, 1, 2, 3, 4], [2, 1, 1, 3, 1], exp.(im*[2.0:2:10;])) |
| 203 | + S1 = svds(A, nsv = 2) |
| 204 | + S2 = svd(full(A)) |
| 205 | + |
| 206 | + ## singular values match: |
| 207 | + @test S1[1][:S] ≈ S2[2][1:2] |
| 208 | + @testset "singular vectors" begin |
| 209 | + ## left singular vectors |
| 210 | + s1_left = abs.(S1[1][:U][:,1:2]) |
| 211 | + s2_left = abs.(S2[1][:,1:2]) |
| 212 | + @test s1_left ≈ s2_left |
| 213 | + |
| 214 | + ## right singular vectors |
| 215 | + s1_right = abs.(S1[1][:Vt][:,1:2]) |
| 216 | + s2_right = abs.(S2[3][:,1:2]) |
| 217 | + @test s1_right ≈ s2_right |
| 218 | + end |
| 219 | + @testset "passing guess for Krylov vectors" begin |
| 220 | + S1 = svds(A, nsv = 2, u0=rand(eltype(A),size(A,1))) |
| 221 | + @test S1[1][:S] ≈ S2[2][1:2] |
| 222 | + S1 = svds(A, nsv = 2, v0=rand(eltype(A),size(A,2))) |
| 223 | + @test S1[1][:S] ≈ S2[2][1:2] |
| 224 | + S1 = svds(A, nsv = 2, u0=rand(eltype(A),size(A,1)), v0=rand(eltype(A),size(A,2))) |
| 225 | + @test S1[1][:S] ≈ S2[2][1:2] |
| 226 | + end |
| 227 | + |
| 228 | + @test_throws ArgumentError svds(A,nsv=0) |
| 229 | + @test_throws ArgumentError svds(A,nsv=20) |
| 230 | + @test_throws DimensionMismatch svds(A,nsv=2,u0=complex(rand(size(A,1)+1))) |
| 231 | + @test_throws DimensionMismatch svds(A,nsv=2,v0=complex(rand(size(A,2)+1))) |
| 232 | + end |
225 | 233 | end
|
226 | 234 |
|
227 |
| -# test promotion |
228 |
| -eigs(rand(1:10, 10, 10)) |
229 |
| -eigs(rand(1:10, 10, 10), rand(1:10, 10, 10) |> t -> t't) |
230 |
| -svds(rand(1:10, 10, 8)) |
231 |
| -@test_throws MethodError eigs(big(rand(1:10, 10, 10))) |
232 |
| -@test_throws MethodError eigs(big(rand(1:10, 10, 10)), rand(1:10, 10, 10)) |
233 |
| -@test_throws MethodError svds(big(rand(1:10, 10, 8))) |
| 235 | +@testset "promotion" begin |
| 236 | + eigs(rand(1:10, 10, 10)) |
| 237 | + eigs(rand(1:10, 10, 10), rand(1:10, 10, 10) |> t -> t't) |
| 238 | + svds(rand(1:10, 10, 8)) |
| 239 | + @test_throws MethodError eigs(big(rand(1:10, 10, 10))) |
| 240 | + @test_throws MethodError eigs(big(rand(1:10, 10, 10)), rand(1:10, 10, 10)) |
| 241 | + @test_throws MethodError svds(big(rand(1:10, 10, 8))) |
| 242 | +end |
234 | 243 |
|
235 | 244 | # Symmetric generalized with singular B
|
236 | 245 | let
|
|
0 commit comments