diff --git a/src/LinearAlgebra.jl b/src/LinearAlgebra.jl index 17216845..27d4255f 100644 --- a/src/LinearAlgebra.jl +++ b/src/LinearAlgebra.jl @@ -673,9 +673,7 @@ matprod_dest(A::Diagonal, B::Diagonal, TS) = _matprod_dest_diag(B, TS) _matprod_dest_diag(A, TS) = similar(A, TS) function _matprod_dest_diag(A::SymTridiagonal, TS) n = size(A, 1) - ev = similar(A, TS, max(0, n-1)) - dv = similar(A, TS, n) - Tridiagonal(ev, dv, similar(ev)) + Tridiagonal(similar(A, TS, n-1), similar(A, TS, n), similar(A, TS, n-1)) end # Special handling for adj/trans vec diff --git a/src/bidiag.jl b/src/bidiag.jl index 8bc5b1c4..d86bad7e 100644 --- a/src/bidiag.jl +++ b/src/bidiag.jl @@ -557,8 +557,7 @@ end # function to get the internally stored vectors for Bidiagonal and [Sym]Tridiagonal # to avoid allocations in _mul! below (#24324, #24578) _diag(A::Tridiagonal, k) = k == -1 ? A.dl : k == 0 ? A.d : A.du -_diag(A::SymTridiagonal{<:Number}, k) = k == 0 ? A.dv : A.ev -_diag(A::SymTridiagonal, k) = k == 0 ? view(A, diagind(A, IndexStyle(A))) : view(A, diagind(A, 1, IndexStyle(A))) +_diag(A::SymTridiagonal, k) = k == 0 ? A.dv : A.ev function _diag(A::Bidiagonal, k) if k == 0 return A.dv @@ -578,45 +577,12 @@ function _bibimul!(C, A, B, _add) check_A_mul_B!_sizes(size(C), size(A), size(B)) n = size(A,1) iszero(n) && return C - if n <= 3 - # naive multiplication - for I in CartesianIndices(C) - _modify!(_add, sum(A[I[1], k] * B[k, I[2]] for k in axes(A,2)), C, I) - end - return C - end + n <= 3 && return mul!(C, Array(A), Array(B), _add.alpha, _add.beta) # We use `_rmul_or_fill!` instead of `_modify!` here since using # `_modify!` in the following loop will not update the # off-diagonal elements for non-zero beta. _rmul_or_fill!(C, _add.beta) iszero(_add.alpha) && return C - @inbounds begin - # first column of C - C[1,1] += _add(A[1,1]*B[1,1] + A[1, 2]*B[2,1]) - C[2,1] += _add(A[2,1]*B[1,1] + A[2,2]*B[2,1]) - C[3,1] += _add(A[3,2]*B[2,1]) - # second column of C - C[1,2] += _add(A[1,1]*B[1,2] + A[1,2]*B[2,2]) - C[2,2] += _add(A[2,1]*B[1,2] + A[2,2]*B[2,2] + A[2,3]*B[3,2]) - C[3,2] += _add(A[3,2]*B[2,2] + A[3,3]*B[3,2]) - C[4,2] += _add(A[4,3]*B[3,2]) - end # inbounds - # middle columns - __bibimul!(C, A, B, _add) - @inbounds begin - C[n-3,n-1] += _add(A[n-3,n-2]*B[n-2,n-1]) - C[n-2,n-1] += _add(A[n-2,n-2]*B[n-2,n-1] + A[n-2,n-1]*B[n-1,n-1]) - C[n-1,n-1] += _add(A[n-1,n-2]*B[n-2,n-1] + A[n-1,n-1]*B[n-1,n-1] + A[n-1,n]*B[n,n-1]) - C[n, n-1] += _add(A[n,n-1]*B[n-1,n-1] + A[n,n]*B[n,n-1]) - # last column of C - C[n-2, n] += _add(A[n-2,n-1]*B[n-1,n]) - C[n-1, n] += _add(A[n-1,n-1]*B[n-1,n ] + A[n-1,n]*B[n,n ]) - C[n, n] += _add(A[n,n-1]*B[n-1,n ] + A[n,n]*B[n,n ]) - end # inbounds - C -end -function __bibimul!(C, A, B, _add) - n = size(A,1) Al = _diag(A, -1) Ad = _diag(A, 0) Au = _diag(A, 1) @@ -624,198 +590,44 @@ function __bibimul!(C, A, B, _add) Bd = _diag(B, 0) Bu = _diag(B, 1) @inbounds begin + # first row of C + C[1,1] += _add(A[1,1]*B[1,1] + A[1, 2]*B[2, 1]) + C[1,2] += _add(A[1,1]*B[1,2] + A[1,2]*B[2,2]) + C[1,3] += _add(A[1,2]*B[2,3]) + # second row of C + C[2,1] += _add(A[2,1]*B[1,1] + A[2,2]*B[2,1]) + C[2,2] += _add(A[2,1]*B[1,2] + A[2,2]*B[2,2] + A[2,3]*B[3,2]) + C[2,3] += _add(A[2,2]*B[2,3] + A[2,3]*B[3,3]) + C[2,4] += _add(A[2,3]*B[3,4]) for j in 3:n-2 - Aj₋2j₋1 = Au[j-2] - Aj₋1j = Au[j-1] - Ajj₊1 = Au[j] - Aj₋1j₋1 = Ad[j-1] - Ajj = Ad[j] - Aj₊1j₊1 = Ad[j+1] Ajj₋1 = Al[j-1] - Aj₊1j = Al[j] - Aj₊2j₊1 = Al[j+1] + Ajj = Ad[j] + Ajj₊1 = Au[j] + Bj₋1j₋2 = Bl[j-2] + Bj₋1j₋1 = Bd[j-1] Bj₋1j = Bu[j-1] + Bjj₋1 = Bl[j-1] Bjj = Bd[j] + Bjj₊1 = Bu[j] Bj₊1j = Bl[j] - - C[j-2, j] += _add(Aj₋2j₋1*Bj₋1j) - C[j-1, j] += _add(Aj₋1j₋1*Bj₋1j + Aj₋1j*Bjj) - C[j, j] += _add(Ajj₋1*Bj₋1j + Ajj*Bjj + Ajj₊1*Bj₊1j) - C[j+1, j] += _add(Aj₊1j*Bjj + Aj₊1j₊1*Bj₊1j) - C[j+2, j] += _add(Aj₊2j₊1*Bj₊1j) - end - end - C -end -function __bibimul!(C, A, B::Bidiagonal, _add) - n = size(A,1) - Al = _diag(A, -1) - Ad = _diag(A, 0) - Au = _diag(A, 1) - Bd = _diag(B, 0) - if B.uplo == 'U' - Bu = _diag(B, 1) - @inbounds begin - for j in 3:n-2 - Aj₋2j₋1 = Au[j-2] - Aj₋1j = Au[j-1] - Aj₋1j₋1 = Ad[j-1] - Ajj = Ad[j] - Ajj₋1 = Al[j-1] - Aj₊1j = Al[j] - Bj₋1j = Bu[j-1] - Bjj = Bd[j] - - C[j-2, j] += _add(Aj₋2j₋1*Bj₋1j) - C[j-1, j] += _add(Aj₋1j₋1*Bj₋1j + Aj₋1j*Bjj) - C[j, j] += _add(Ajj₋1*Bj₋1j + Ajj*Bjj) - C[j+1, j] += _add(Aj₊1j*Bjj) - end - end - else # B.uplo == 'L' - Bl = _diag(B, -1) - @inbounds begin - for j in 3:n-2 - Aj₋1j = Au[j-1] - Ajj₊1 = Au[j] - Ajj = Ad[j] - Aj₊1j₊1 = Ad[j+1] - Aj₊1j = Al[j] - Aj₊2j₊1 = Al[j+1] - Bjj = Bd[j] - Bj₊1j = Bl[j] - - C[j-1, j] += _add(Aj₋1j*Bjj) - C[j, j] += _add(Ajj*Bjj + Ajj₊1*Bj₊1j) - C[j+1, j] += _add(Aj₊1j*Bjj + Aj₊1j₊1*Bj₊1j) - C[j+2, j] += _add(Aj₊2j₊1*Bj₊1j) - end - end - end - C -end -function __bibimul!(C, A::Bidiagonal, B, _add) - n = size(A,1) - Bl = _diag(B, -1) - Bd = _diag(B, 0) - Bu = _diag(B, 1) - Ad = _diag(A, 0) - if A.uplo == 'U' - Au = _diag(A, 1) - @inbounds begin - for j in 3:n-2 - Aj₋2j₋1 = Au[j-2] - Aj₋1j = Au[j-1] - Ajj₊1 = Au[j] - Aj₋1j₋1 = Ad[j-1] - Ajj = Ad[j] - Aj₊1j₊1 = Ad[j+1] - Bj₋1j = Bu[j-1] - Bjj = Bd[j] - Bj₊1j = Bl[j] - - C[j-2, j] += _add(Aj₋2j₋1*Bj₋1j) - C[j-1, j] += _add(Aj₋1j₋1*Bj₋1j + Aj₋1j*Bjj) - C[j, j] += _add(Ajj*Bjj + Ajj₊1*Bj₊1j) - C[j+1, j] += _add(Aj₊1j₊1*Bj₊1j) - end + Bj₊1j₊1 = Bd[j+1] + Bj₊1j₊2 = Bu[j+1] + C[j,j-2] += _add( Ajj₋1*Bj₋1j₋2) + C[j, j-1] += _add(Ajj₋1*Bj₋1j₋1 + Ajj*Bjj₋1) + C[j, j ] += _add(Ajj₋1*Bj₋1j + Ajj*Bjj + Ajj₊1*Bj₊1j) + C[j, j+1] += _add(Ajj *Bjj₊1 + Ajj₊1*Bj₊1j₊1) + C[j, j+2] += _add(Ajj₊1*Bj₊1j₊2) end - else # A.uplo == 'L' - Al = _diag(A, -1) - @inbounds begin - for j in 3:n-2 - Aj₋1j₋1 = Ad[j-1] - Ajj = Ad[j] - Aj₊1j₊1 = Ad[j+1] - Ajj₋1 = Al[j-1] - Aj₊1j = Al[j] - Aj₊2j₊1 = Al[j+1] - Bj₋1j = Bu[j-1] - Bjj = Bd[j] - Bj₊1j = Bl[j] - - C[j-1, j] += _add(Aj₋1j₋1*Bj₋1j) - C[j, j] += _add(Ajj₋1*Bj₋1j + Ajj*Bjj) - C[j+1, j] += _add(Aj₊1j*Bjj + Aj₊1j₊1*Bj₊1j) - C[j+2, j] += _add(Aj₊2j₊1*Bj₊1j) - end - end - end - C -end -function __bibimul!(C, A::Bidiagonal, B::Bidiagonal, _add) - n = size(A,1) - Ad = _diag(A, 0) - Bd = _diag(B, 0) - if A.uplo == 'U' && B.uplo == 'U' - Au = _diag(A, 1) - Bu = _diag(B, 1) - @inbounds begin - for j in 3:n-2 - Aj₋2j₋1 = Au[j-2] - Aj₋1j = Au[j-1] - Aj₋1j₋1 = Ad[j-1] - Ajj = Ad[j] - Bj₋1j = Bu[j-1] - Bjj = Bd[j] - - C[j-2, j] += _add(Aj₋2j₋1*Bj₋1j) - C[j-1, j] += _add(Aj₋1j₋1*Bj₋1j + Aj₋1j*Bjj) - C[j, j] += _add(Ajj*Bjj) - end - end - elseif A.uplo == 'U' && B.uplo == 'L' - Au = _diag(A, 1) - Bl = _diag(B, -1) - @inbounds begin - for j in 3:n-2 - Aj₋1j = Au[j-1] - Ajj₊1 = Au[j] - Ajj = Ad[j] - Aj₊1j₊1 = Ad[j+1] - Bjj = Bd[j] - Bj₊1j = Bl[j] - - C[j-1, j] += _add(Aj₋1j*Bjj) - C[j, j] += _add(Ajj*Bjj + Ajj₊1*Bj₊1j) - C[j+1, j] += _add(Aj₊1j₊1*Bj₊1j) - end - end - elseif A.uplo == 'L' && B.uplo == 'U' - Al = _diag(A, -1) - Bu = _diag(B, 1) - @inbounds begin - for j in 3:n-2 - Aj₋1j₋1 = Ad[j-1] - Ajj = Ad[j] - Ajj₋1 = Al[j-1] - Aj₊1j = Al[j] - Bj₋1j = Bu[j-1] - Bjj = Bd[j] - - C[j-1, j] += _add(Aj₋1j₋1*Bj₋1j) - C[j, j] += _add(Ajj₋1*Bj₋1j + Ajj*Bjj) - C[j+1, j] += _add(Aj₊1j*Bjj) - end - end - else # A.uplo == 'L' && B.uplo == 'L' - Al = _diag(A, -1) - Bl = _diag(B, -1) - @inbounds begin - for j in 3:n-2 - Ajj = Ad[j] - Aj₊1j₊1 = Ad[j+1] - Aj₊1j = Al[j] - Aj₊2j₊1 = Al[j+1] - Bjj = Bd[j] - Bj₊1j = Bl[j] - - C[j, j] += _add(Ajj*Bjj) - C[j+1, j] += _add(Aj₊1j*Bjj + Aj₊1j₊1*Bj₊1j) - C[j+2, j] += _add(Aj₊2j₊1*Bj₊1j) - end - end - end + # row before last of C + C[n-1,n-3] += _add(A[n-1,n-2]*B[n-2,n-3]) + C[n-1,n-2] += _add(A[n-1,n-1]*B[n-1,n-2] + A[n-1,n-2]*B[n-2,n-2]) + C[n-1,n-1] += _add(A[n-1,n-2]*B[n-2,n-1] + A[n-1,n-1]*B[n-1,n-1] + A[n-1,n]*B[n,n-1]) + C[n-1,n ] += _add(A[n-1,n-1]*B[n-1,n ] + A[n-1, n]*B[n ,n ]) + # last row of C + C[n,n-2] += _add(A[n,n-1]*B[n-1,n-2]) + C[n,n-1] += _add(A[n,n-1]*B[n-1,n-1] + A[n,n]*B[n,n-1]) + C[n,n ] += _add(A[n,n-1]*B[n-1,n ] + A[n,n]*B[n,n ]) + end # inbounds C end @@ -932,52 +744,7 @@ function _mul!(C::AbstractVecOrMat, A::BiTriSym, B::AbstractVecOrMat, _add::MulA nB = size(B,2) (iszero(nA) || iszero(nB)) && return C iszero(_add.alpha) && return _rmul_or_fill!(C, _add.beta) - if nA <= 3 - # naive multiplication - for I in CartesianIndices(C) - col = Base.tail(Tuple(I)) - _modify!(_add, sum(A[I[1], k] * B[k, col...] for k in axes(A,2)), C, I) - end - return C - end - _mul_bitrisym!(C, A, B, _add) -end -function _mul_bitrisym!(C::AbstractVecOrMat, A::Bidiagonal, B::AbstractVecOrMat, _add::MulAddMul) - nA = size(A,1) - nB = size(B,2) - d = A.dv - if A.uplo == 'U' - u = A.ev - @inbounds begin - for j = 1:nB - b₀, b₊ = B[1, j], B[2, j] - _modify!(_add, d[1]*b₀ + u[1]*b₊, C, (1, j)) - for i = 2:nA - 1 - b₀, b₊ = b₊, B[i + 1, j] - _modify!(_add, d[i]*b₀ + u[i]*b₊, C, (i, j)) - end - _modify!(_add, d[nA]*b₊, C, (nA, j)) - end - end - else - l = A.ev - @inbounds begin - for j = 1:nB - b₀, b₊ = B[1, j], B[2, j] - _modify!(_add, d[1]*b₀, C, (1, j)) - for i = 2:nA - 1 - b₋, b₀, b₊ = b₀, b₊, B[i + 1, j] - _modify!(_add, l[i - 1]*b₋ + d[i]*b₀, C, (i, j)) - end - _modify!(_add, l[nA - 1]*b₀ + d[nA]*b₊, C, (nA, j)) - end - end - end - C -end -function _mul_bitrisym!(C::AbstractVecOrMat, A::TriSym, B::AbstractVecOrMat, _add::MulAddMul) - nA = size(A,1) - nB = size(B,2) + nA <= 3 && return mul!(C, Array(A), Array(B), _add.alpha, _add.beta) l = _diag(A, -1) d = _diag(A, 0) u = _diag(A, 1) @@ -1002,9 +769,8 @@ function _mul!(C::AbstractMatrix, A::AbstractMatrix, B::TriSym, _add::MulAddMul) m = size(B,2) (iszero(m) || iszero(n)) && return C iszero(_add.alpha) && return _rmul_or_fill!(C, _add.beta) - if m == 1 - B11 = B[1,1] - return mul!(C, A, B11, _add.alpha, _add.beta) + if n <= 3 || m <= 1 + return mul!(C, Array(A), Array(B), _add.alpha, _add.beta) end Bl = _diag(B, -1) Bd = _diag(B, 0) @@ -1038,18 +804,21 @@ function _mul!(C::AbstractMatrix, A::AbstractMatrix, B::Bidiagonal, _add::MulAdd m, n = size(A) (iszero(m) || iszero(n)) && return C iszero(_add.alpha) && return _rmul_or_fill!(C, _add.beta) + if size(A, 1) <= 3 || size(B, 2) <= 1 + return mul!(C, Array(A), Array(B), _add.alpha, _add.beta) + end @inbounds if B.uplo == 'U' - for j in n:-1:2, i in 1:m - _modify!(_add, A[i,j] * B.dv[j] + A[i,j-1] * B.ev[j-1], C, (i, j)) - end for i in 1:m + for j in n:-1:2 + _modify!(_add, A[i,j] * B.dv[j] + A[i,j-1] * B.ev[j-1], C, (i, j)) + end _modify!(_add, A[i,1] * B.dv[1], C, (i, 1)) end else # uplo == 'L' - for j in 1:n-1, i in 1:m - _modify!(_add, A[i,j] * B.dv[j] + A[i,j+1] * B.ev[j], C, (i, j)) - end for i in 1:m + for j in 1:n-1 + _modify!(_add, A[i,j] * B.dv[j] + A[i,j+1] * B.ev[j], C, (i, j)) + end _modify!(_add, A[i,n] * B.dv[n], C, (i, n)) end end @@ -1065,12 +834,7 @@ function _dibimul!(C, A, B, _add) check_A_mul_B!_sizes(size(C), size(A), size(B)) n = size(A,1) iszero(n) && return C - if n <= 3 - for I in CartesianIndices(C) - _modify!(_add, A.diag[I[1]] * B[I[1], I[2]], C, I) - end - return C - end + n <= 3 && return mul!(C, Array(A), Array(B), _add.alpha, _add.beta) _rmul_or_fill!(C, _add.beta) # see the same use above iszero(_add.alpha) && return C Ad = A.diag diff --git a/test/bidiag.jl b/test/bidiag.jl index 58c228e3..ef50658a 100644 --- a/test/bidiag.jl +++ b/test/bidiag.jl @@ -1026,71 +1026,26 @@ end @test_throws "cannot set entry" B[1,2] = 4 end -@testset "mul for small matrices" begin - @testset for n in 0:6 - D = Diagonal(rand(n)) - v = rand(n) - @testset for uplo in (:L, :U) - B = Bidiagonal(rand(n), rand(max(n-1,0)), uplo) - M = Matrix(B) - - @test B * v ≈ M * v - @test mul!(similar(v), B, v) ≈ M * v - @test mul!(ones(size(v)), B, v, 2, 3) ≈ M * v * 2 .+ 3 - - @test B * B ≈ M * M - @test mul!(similar(B, size(B)), B, B) ≈ M * M - @test mul!(ones(size(B)), B, B, 2, 4) ≈ M * M * 2 .+ 4 - - for m in 0:6 - AL = rand(m,n) - AR = rand(n,m) - @test AL * B ≈ AL * M - @test B * AR ≈ M * AR - @test mul!(similar(AL), AL, B) ≈ AL * M - @test mul!(similar(AR), B, AR) ≈ M * AR - @test mul!(ones(size(AL)), AL, B, 2, 4) ≈ AL * M * 2 .+ 4 - @test mul!(ones(size(AR)), B, AR, 2, 4) ≈ M * AR * 2 .+ 4 - end - - @test B * D ≈ M * D - @test D * B ≈ D * M - @test mul!(similar(B), B, D) ≈ M * D - @test mul!(similar(B), B, D) ≈ M * D - @test mul!(similar(B, size(B)), D, B) ≈ D * M - @test mul!(similar(B, size(B)), B, D) ≈ M * D - @test mul!(ones(size(B)), D, B, 2, 4) ≈ D * M * 2 .+ 4 - @test mul!(ones(size(B)), B, D, 2, 4) ≈ M * D * 2 .+ 4 - end - BL = Bidiagonal(rand(n), rand(max(0, n-1)), :L) - ML = Matrix(BL) - BU = Bidiagonal(rand(n), rand(max(0, n-1)), :U) - MU = Matrix(BU) - T = Tridiagonal(zeros(max(0, n-1)), zeros(n), zeros(max(0, n-1))) - @test mul!(T, BL, BU) ≈ ML * MU - @test mul!(T, BU, BL) ≈ MU * ML - T = Tridiagonal(ones(max(0, n-1)), ones(n), ones(max(0, n-1))) - @test mul!(copy(T), BL, BU, 2, 3) ≈ ML * MU * 2 + T * 3 - @test mul!(copy(T), BU, BL, 2, 3) ≈ MU * ML * 2 + T * 3 - end - - n = 4 - arr = SizedArrays.SizedArray{(2,2)}(reshape([1:4;],2,2)) - for B in ( - Bidiagonal(fill(arr,n), fill(arr,n-1), :L), - Bidiagonal(fill(arr,n), fill(arr,n-1), :U), - ) - @test B * B ≈ Matrix(B) * Matrix(B) - BL = Bidiagonal(fill(arr,n), fill(arr,n-1), :L) - BU = Bidiagonal(fill(arr,n), fill(arr,n-1), :U) - @test BL * B ≈ Matrix(BL) * Matrix(B) - @test BU * B ≈ Matrix(BU) * Matrix(B) - @test B * BL ≈ Matrix(B) * Matrix(BL) - @test B * BU ≈ Matrix(B) * Matrix(BU) - D = Diagonal(fill(arr,n)) - @test D * B ≈ Matrix(D) * Matrix(B) - @test B * D ≈ Matrix(B) * Matrix(D) - end +@testset "mul with empty arrays" begin + A = zeros(5,0) + B = Bidiagonal(zeros(0), zeros(0), :U) + BL = Bidiagonal(zeros(5), zeros(4), :U) + @test size(A * B) == size(A) + @test size(BL * A) == size(A) + @test size(B * B) == size(B) + C = similar(A) + @test mul!(C, A, B) == A * B + @test mul!(C, BL, A) == BL * A + @test mul!(similar(B), B, B) == B * B + @test mul!(similar(B, size(B)), B, B) == B * B + + v = zeros(size(B,2)) + @test size(B * v) == size(v) + @test mul!(similar(v), B, v) == B * v + + D = Diagonal(zeros(size(B,2))) + @test size(B * D) == size(D * B) == size(D) + @test mul!(similar(D), B, D) == mul!(similar(D), D, B) == B * D end end # module TestBidiagonal diff --git a/test/tridiag.jl b/test/tridiag.jl index 15ac7f9f..3330fa68 100644 --- a/test/tridiag.jl +++ b/test/tridiag.jl @@ -970,75 +970,4 @@ end @test sprint(show, S) == "SymTridiagonal($(repr(diag(S))), $(repr(diag(S,1))))" end -@testset "mul for small matrices" begin - @testset for n in 0:6 - for T in ( - Tridiagonal(rand(max(n-1,0)), rand(n), rand(max(n-1,0))), - SymTridiagonal(rand(n), rand(max(n-1,0))), - ) - M = Matrix(T) - @test T * T ≈ M * M - @test mul!(similar(T, size(T)), T, T) ≈ M * M - @test mul!(ones(size(T)), T, T, 2, 4) ≈ M * M * 2 .+ 4 - - for m in 0:6 - AR = rand(n,m) - AL = rand(m,n) - @test AL * T ≈ AL * M - @test T * AR ≈ M * AR - @test mul!(similar(AL), AL, T) ≈ AL * M - @test mul!(similar(AR), T, AR) ≈ M * AR - @test mul!(ones(size(AL)), AL, T, 2, 4) ≈ AL * M * 2 .+ 4 - @test mul!(ones(size(AR)), T, AR, 2, 4) ≈ M * AR * 2 .+ 4 - end - - v = rand(n) - @test T * v ≈ M * v - @test mul!(similar(v), T, v) ≈ M * v - - D = Diagonal(rand(n)) - @test T * D ≈ M * D - @test D * T ≈ D * M - @test mul!(Tridiagonal(similar(T)), D, T) ≈ D * M - @test mul!(Tridiagonal(similar(T)), T, D) ≈ M * D - @test mul!(similar(T, size(T)), D, T) ≈ D * M - @test mul!(similar(T, size(T)), T, D) ≈ M * D - @test mul!(ones(size(T)), D, T, 2, 4) ≈ D * M * 2 .+ 4 - @test mul!(ones(size(T)), T, D, 2, 4) ≈ M * D * 2 .+ 4 - - for uplo in (:U, :L) - B = Bidiagonal(rand(n), rand(max(0, n-1)), uplo) - @test T * B ≈ M * B - @test B * T ≈ B * M - if n <= 2 - @test mul!(Tridiagonal(similar(T)), B, T) ≈ B * M - @test mul!(Tridiagonal(similar(T)), T, B) ≈ M * B - end - @test mul!(similar(T, size(T)), B, T) ≈ B * M - @test mul!(similar(T, size(T)), T, B) ≈ M * B - @test mul!(ones(size(T)), B, T, 2, 4) ≈ B * M * 2 .+ 4 - @test mul!(ones(size(T)), T, B, 2, 4) ≈ M * B * 2 .+ 4 - end - end - end - - n = 4 - arr = SizedArrays.SizedArray{(2,2)}(reshape([1:4;],2,2)) - for T in ( - SymTridiagonal(fill(arr,n), fill(arr,n-1)), - Tridiagonal(fill(arr,n-1), fill(arr,n), fill(arr,n-1)), - ) - @test T * T ≈ Matrix(T) * Matrix(T) - BL = Bidiagonal(fill(arr,n), fill(arr,n-1), :L) - BU = Bidiagonal(fill(arr,n), fill(arr,n-1), :U) - @test BL * T ≈ Matrix(BL) * Matrix(T) - @test BU * T ≈ Matrix(BU) * Matrix(T) - @test T * BL ≈ Matrix(T) * Matrix(BL) - @test T * BU ≈ Matrix(T) * Matrix(BU) - D = Diagonal(fill(arr,n)) - @test D * T ≈ Matrix(D) * Matrix(T) - @test T * D ≈ Matrix(T) * Matrix(D) - end -end - end # module TestTridiagonal