-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathtangent_arithmetic.jl
157 lines (136 loc) · 6.46 KB
/
tangent_arithmetic.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#==
All tangents need to define + and *.
That happens here.
We just use @eval to define all the combinations for AbstractTangent
subtypes, as we know the full set that might be encountered.
Thus we can avoid any ambiguities.
Notice:
The precedence goes:
`NotImplemented, NoTangent, ZeroTangent, AbstractThunk, Tangent, Any`
Thus each of the @eval loops create most definitions of + and *
defines the combination this type with all types of lower precidence.
This means each eval loops is 1 item smaller than the previous.
==#
# we propagate `NotImplemented` (e.g., in `@scalar_rule`)
# this requires the following definitions (see also #337)
Base.:+(x::NotImplemented, ::NotImplemented) = x
Base.:*(x::NotImplemented, ::NotImplemented) = x
LinearAlgebra.dot(x::NotImplemented, ::NotImplemented) = x
# `NotImplemented` always "wins" +
for T in (:ZeroTangent, :NoTangent, :AbstractThunk, :StructuralTangent, :Any)
@eval Base.:+(x::NotImplemented, ::$T) = x
@eval Base.:+(::$T, x::NotImplemented) = x
end
# `NotImplemented` "loses" * and dot against NoTangent and ZeroTangent
# this can be used to ignore partial derivatives that are not implemented
for T in (:ZeroTangent, :NoTangent)
@eval Base.:*(::NotImplemented, ::$T) = $T()
@eval Base.:*(::$T, ::NotImplemented) = $T()
@eval LinearAlgebra.dot(::NotImplemented, ::$T) = $T()
@eval LinearAlgebra.dot(::$T, ::NotImplemented) = $T()
end
# `NotImplemented` "wins" * and dot for other types
for T in (:AbstractThunk, :StructuralTangent, :Any)
@eval Base.:*(x::NotImplemented, ::$T) = x
@eval Base.:*(::$T, x::NotImplemented) = x
@eval LinearAlgebra.dot(x::NotImplemented, ::$T) = x
@eval LinearAlgebra.dot(::$T, x::NotImplemented) = x
end
# unary :- is the same as multiplication by -1
Base.:-(x::NotImplemented) = x
# subtraction throws an exception: in AD we add tangents but do not subtract them
# subtraction happens eg. in gradient descent which can't be performed with `NotImplemented`
Base.:-(x::NotImplemented, ::NotImplemented) = throw(NotImplementedException(x))
for T in (:ZeroTangent, :NoTangent, :AbstractThunk, :Tangent, :Any)
@eval Base.:-(x::NotImplemented, ::$T) = throw(NotImplementedException(x))
@eval Base.:-(::$T, x::NotImplemented) = throw(NotImplementedException(x))
end
Base.:+(::NoTangent, ::NoTangent) = NoTangent()
Base.:-(::NoTangent, ::NoTangent) = NoTangent()
Base.:-(::NoTangent) = NoTangent()
Base.:*(::NoTangent, ::NoTangent) = NoTangent()
LinearAlgebra.dot(::NoTangent, ::NoTangent) = NoTangent()
for T in (:AbstractThunk, :StructuralTangent, :Any)
@eval Base.:+(::NoTangent, b::$T) = b
@eval Base.:+(a::$T, ::NoTangent) = a
@eval Base.:-(::NoTangent, b::$T) = -b
@eval Base.:-(a::$T, ::NoTangent) = a
@eval Base.:*(::NoTangent, ::$T) = NoTangent()
@eval Base.:*(::$T, ::NoTangent) = NoTangent()
@eval LinearAlgebra.dot(::NoTangent, ::$T) = NoTangent()
@eval LinearAlgebra.dot(::$T, ::NoTangent) = NoTangent()
end
# `NoTangent` and `ZeroTangent` have special relationship,
# NoTangent wins add, ZeroTangent wins *. This is (in theory) to allow `*` to be used for
# selecting things.
Base.:+(::NoTangent, ::ZeroTangent) = NoTangent()
Base.:+(::ZeroTangent, ::NoTangent) = NoTangent()
Base.:-(::NoTangent, ::ZeroTangent) = NoTangent()
Base.:-(::ZeroTangent, ::NoTangent) = NoTangent()
Base.:*(::NoTangent, ::ZeroTangent) = ZeroTangent()
Base.:*(::ZeroTangent, ::NoTangent) = ZeroTangent()
LinearAlgebra.dot(::NoTangent, ::ZeroTangent) = ZeroTangent()
LinearAlgebra.dot(::ZeroTangent, ::NoTangent) = ZeroTangent()
Base.muladd(::ZeroTangent, x, y) = y
Base.muladd(x, ::ZeroTangent, y) = y
Base.muladd(x, y, ::ZeroTangent) = x * y
Base.muladd(::ZeroTangent, ::ZeroTangent, y) = y
Base.muladd(x, ::ZeroTangent, ::ZeroTangent) = ZeroTangent()
Base.muladd(::ZeroTangent, x, ::ZeroTangent) = ZeroTangent()
Base.muladd(::ZeroTangent, ::ZeroTangent, ::ZeroTangent) = ZeroTangent()
Base.:+(::ZeroTangent, ::ZeroTangent) = ZeroTangent()
Base.:-(::ZeroTangent, ::ZeroTangent) = ZeroTangent()
Base.:-(::ZeroTangent) = ZeroTangent()
Base.:*(::ZeroTangent, ::ZeroTangent) = ZeroTangent()
LinearAlgebra.dot(::ZeroTangent, ::ZeroTangent) = ZeroTangent()
for T in (:AbstractThunk, :StructuralTangent, :Any)
@eval Base.:+(::ZeroTangent, b::$T) = b
@eval Base.:+(a::$T, ::ZeroTangent) = a
@eval Base.:-(::ZeroTangent, b::$T) = -b
@eval Base.:-(a::$T, ::ZeroTangent) = a
@eval Base.:*(::ZeroTangent, ::$T) = ZeroTangent()
@eval Base.:*(::$T, ::ZeroTangent) = ZeroTangent()
@eval LinearAlgebra.dot(::ZeroTangent, ::$T) = ZeroTangent()
@eval LinearAlgebra.dot(::$T, ::ZeroTangent) = ZeroTangent()
end
Base.real(::ZeroTangent) = ZeroTangent()
Base.imag(::ZeroTangent) = ZeroTangent()
Base.complex(::ZeroTangent) = ZeroTangent()
Base.complex(::ZeroTangent, ::ZeroTangent) = ZeroTangent()
Base.complex(::ZeroTangent, i::Real) = complex(oftype(i, 0), i)
Base.complex(r::Real, ::ZeroTangent) = complex(r)
Base.:+(a::AbstractThunk, b::AbstractThunk) = unthunk(a) + unthunk(b)
Base.:*(a::AbstractThunk, b::AbstractThunk) = unthunk(a) * unthunk(b)
for T in (:Tangent, :Any)
@eval Base.:+(a::AbstractThunk, b::$T) = unthunk(a) + b
@eval Base.:+(a::$T, b::AbstractThunk) = a + unthunk(b)
@eval Base.:*(a::AbstractThunk, b::$T) = unthunk(a) * b
@eval Base.:*(a::$T, b::AbstractThunk) = a * unthunk(b)
end
function Base.:+(a::StructuralTangent{P}, b::StructuralTangent{P}) where {P}
data = elementwise_add(backing(a), backing(b))
return StructuralTangent{P}(data)
end
function Base.:+(a::P, d::StructuralTangent{P}) where {P}
net_backing = elementwise_add(backing(a), backing(d))
if debug_mode()
try
return construct(P, net_backing)
catch err
throw(PrimalAdditionFailedException(a, d, err))
end
else
return construct(P, net_backing)
end
end
Base.:+(a::Dict, d::Tangent{P}) where {P} = merge(+, a, backing(d))
Base.:+(a::StructuralTangent{P}, b::P) where {P} = b + a
Base.:-(tangent::StructuralTangent{P}) where {P} = map(-, tangent)
Base.:-(a::StructuralTangent{P}, b::StructuralTangent{P}) where {P} = a + (-b)
# We intentionally do not define, `Base.*(::Tangent, ::Tangent)` as that is not meaningful
# In general one doesn't have to represent multiplications of 2 tangents
# Only of a tangent and a scaling factor (generally `Real`)
for T in (:Number,)
@eval Base.:*(s::$T, tangent::StructuralTangent) = map(x -> s * x, tangent)
@eval Base.:*(tangent::StructuralTangent, s::$T) = map(x -> x * s, tangent)
end