This repository was archived by the owner on May 5, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathreshape.jl
500 lines (416 loc) · 16.8 KB
/
reshape.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
##############################################################################
##
## Reshaping
##
## Also, see issue # ??
##
##############################################################################
##############################################################################
##
## stack()
## melt()
##
##############################################################################
"""
Stacks a DataTable; convert from a wide to long format
```julia
stack(dt::AbstractDataTable, [measure_vars], [id_vars];
variable_name::Symbol=:variable, value_name::Symbol=:value)
melt(dt::AbstractDataTable, [id_vars], [measure_vars];
variable_name::Symbol=:variable, value_name::Symbol=:value)
```
### Arguments
* `dt` : the AbstractDataTable to be stacked
* `measure_vars` : the columns to be stacked (the measurement
variables), a normal column indexing type, like a Symbol,
Vector{Symbol}, Int, etc.; for `melt`, defaults to all
variables that are not `id_vars`. If neither `measure_vars`
or `id_vars` are given, `measure_vars` defaults to all
floating point columns.
* `id_vars` : the identifier columns that are repeated during
stacking, a normal column indexing type; for `stack` defaults to all
variables that are not `measure_vars`
* `variable_name` : the name of the new stacked column that shall hold the names
of each of `measure_vars`
* `value_name` : the name of the new stacked column containing the values from
each of `measure_vars`
### Result
* `::DataTable` : the long-format datatable with column `:value`
holding the values of the stacked columns (`measure_vars`), with
column `:variable` a Vector of Symbols with the `measure_vars` name,
and with columns for each of the `id_vars`.
See also `stackdt` and `meltdt` for stacking methods that return a
view into the original DataTable. See `unstack` for converting from
long to wide format.
### Examples
```julia
d1 = DataTable(a = repeat([1:3;], inner = [4]),
b = repeat([1:4;], inner = [3]),
c = randn(12),
d = randn(12),
e = map(string, 'a':'l'))
d1s = stack(d1, [:c, :d])
d1s2 = stack(d1, [:c, :d], [:a])
d1m = melt(d1, [:a, :b, :e])
d1s_name = melt(d1, [:a, :b, :e], variable_name=:somemeasure)
```
"""
function stack(dt::AbstractDataTable, measure_vars::Vector{Int},
id_vars::Vector{Int}; variable_name::Symbol=:variable,
value_name::Symbol=:value)
N = length(measure_vars)
cnames = names(dt)[id_vars]
insert!(cnames, 1, value_name)
insert!(cnames, 1, variable_name)
DataTable(Any[Compat.repeat(_names(dt)[measure_vars], inner=nrow(dt)), # variable
vcat([dt[c] for c in measure_vars]...), # value
[Compat.repeat(dt[c], outer=N) for c in id_vars]...], # id_var columns
cnames)
end
function stack(dt::AbstractDataTable, measure_var::Int, id_var::Int;
variable_name::Symbol=:variable, value_name::Symbol=:value)
stack(dt, [measure_var], [id_var];
variable_name=variable_name, value_name=value_name)
end
function stack(dt::AbstractDataTable, measure_vars::Vector{Int}, id_var::Int;
variable_name::Symbol=:variable, value_name::Symbol=:value)
stack(dt, measure_vars, [id_var];
variable_name=variable_name, value_name=value_name)
end
function stack(dt::AbstractDataTable, measure_var::Int, id_vars::Vector{Int};
variable_name::Symbol=:variable, value_name::Symbol=:value)
stackdt(dt, [measure_var], id_vars;
variable_name=variable_name, value_name=value_name)
end
function stack(dt::AbstractDataTable, measure_vars, id_vars;
variable_name::Symbol=:variable, value_name::Symbol=:value)
stack(dt, index(dt)[measure_vars], index(dt)[id_vars];
variable_name=variable_name, value_name=value_name)
end
# no vars specified, by default select only numeric columns
numeric_vars(dt::AbstractDataTable) =
[T <: AbstractFloat || (T <: Nullable && eltype(T) <: AbstractFloat)
for T in eltypes(dt)]
function stack(dt::AbstractDataTable, measure_vars = numeric_vars(dt);
variable_name::Symbol=:variable, value_name::Symbol=:value)
mv_inds = index(dt)[measure_vars]
stack(dt, mv_inds, _setdiff(1:ncol(dt), mv_inds);
variable_name=variable_name, value_name=value_name)
end
"""
Stacks a DataTable; convert from a wide to long format; see
`stack`.
"""
function melt(dt::AbstractDataTable, id_vars::@compat(Union{Int,Symbol});
variable_name::Symbol=:variable, value_name::Symbol=:value)
melt(dt, [id_vars]; variable_name=variable_name, value_name=value_name)
end
function melt(dt::AbstractDataTable, id_vars;
variable_name::Symbol=:variable, value_name::Symbol=:value)
id_inds = index(dt)[id_vars]
stack(dt, _setdiff(1:ncol(dt), id_inds), id_inds;
variable_name=variable_name, value_name=value_name)
end
function melt(dt::AbstractDataTable, id_vars, measure_vars;
variable_name::Symbol=:variable, value_name::Symbol=:value)
stack(dt, measure_vars, id_vars; variable_name=variable_name,
value_name=value_name)
end
melt(dt::AbstractDataTable; variable_name::Symbol=:variable, value_name::Symbol=:value) =
stack(dt; variable_name=variable_name, value_name=value_name)
##############################################################################
##
## unstack()
##
##############################################################################
"""
Unstacks a DataTable; convert from a long to wide format
```julia
unstack(dt::AbstractDataTable, rowkey, colkey, value)
unstack(dt::AbstractDataTable, colkey, value)
unstack(dt::AbstractDataTable)
```
### Arguments
* `dt` : the AbstractDataTable to be unstacked
* `rowkey` : the column with a unique key for each row, if not given,
find a key by grouping on anything not a `colkey` or `value`
* `colkey` : the column holding the column names in wide format,
defaults to `:variable`
* `value` : the value column, defaults to `:value`
### Result
* `::DataTable` : the wide-format datatable
### Examples
```julia
wide = DataTable(id = 1:12,
a = repeat([1:3;], inner = [4]),
b = repeat([1:4;], inner = [3]),
c = randn(12),
d = randn(12))
long = stack(wide)
wide0 = unstack(long)
wide1 = unstack(long, :variable, :value)
wide2 = unstack(long, :id, :variable, :value)
```
Note that there are some differences between the widened results above.
"""
function unstack(dt::AbstractDataTable, rowkey::Int, colkey::Int, value::Int)
# `rowkey` integer indicating which column to place along rows
# `colkey` integer indicating which column to place along column headers
# `value` integer indicating which column has values
refkeycol = NullableCategoricalArray(dt[rowkey])
valuecol = dt[value]
keycol = NullableCategoricalArray(dt[colkey])
Nrow = length(refkeycol.pool)
Ncol = length(keycol.pool)
payload = DataTable(Any[similar_nullable(valuecol, Nrow) for i in 1:Ncol], map(Symbol, levels(keycol)))
nowarning = true
for k in 1:nrow(dt)
j = Int(CategoricalArrays.order(keycol.pool)[keycol.refs[k]])
i = Int(CategoricalArrays.order(refkeycol.pool)[refkeycol.refs[k]])
if i > 0 && j > 0
if nowarning && !isnull(payload[j][i])
warn("Duplicate entries in unstack.")
nowarning = false
end
payload[j][i] = valuecol[k]
end
end
levs = levels(refkeycol)
col = similar_nullable(dt[rowkey], length(levs))
insert!(payload, 1, copy!(col, levs), _names(dt)[rowkey])
end
unstack(dt::AbstractDataTable, rowkey, colkey, value) =
unstack(dt, index(dt)[rowkey], index(dt)[colkey], index(dt)[value])
# Version of unstack with just the colkey and value columns provided
unstack(dt::AbstractDataTable, colkey, value) =
unstack(dt, index(dt)[colkey], index(dt)[value])
function unstack(dt::AbstractDataTable, colkey::Int, value::Int)
# group on anything not a key or value:
g = groupby(dt, setdiff(_names(dt), _names(dt)[[colkey, value]]), sort=true)
groupidxs = [g.idx[g.starts[i]:g.ends[i]] for i in 1:length(g.starts)]
rowkey = zeros(Int, size(dt, 1))
for i in 1:length(groupidxs)
rowkey[groupidxs[i]] = i
end
keycol = NullableCategoricalArray(dt[colkey])
valuecol = dt[value]
dt1 = nullable!(dt[g.idx[g.starts], g.cols], g.cols)
Nrow = length(g)
Ncol = length(levels(keycol))
dt2 = DataTable(Any[similar_nullable(valuecol, Nrow) for i in 1:Ncol], map(Symbol, levels(keycol)))
nowarning = true
for k in 1:nrow(dt)
j = Int(CategoricalArrays.order(keycol.pool)[keycol.refs[k]])
i = rowkey[k]
if i > 0 && j > 0
if nowarning && !isnull(dt2[j][i])
warn("Duplicate entries in unstack at row $k.")
nowarning = false
end
dt2[j][i] = valuecol[k]
end
end
merge!(dt1, dt2)
end
unstack(dt::AbstractDataTable) = unstack(dt, :id, :variable, :value)
##############################################################################
##
## Reshaping using referencing (issue #145)
## New AbstractVector types (all read only):
## StackedVector
## RepeatedVector
##
##############################################################################
"""
An AbstractVector{Any} that is a linear, concatenated view into
another set of AbstractVectors
NOTE: Not exported.
### Constructor
```julia
StackedVector(d::AbstractVector...)
```
### Arguments
* `d...` : one or more AbstractVectors
### Examples
```julia
StackedVector(Any[[1,2], [9,10], [11,12]]) # [1,2,9,10,11,12]
```
"""
type StackedVector <: AbstractVector{Any}
components::Vector{Any}
end
function Base.getindex(v::StackedVector,i::Real)
lengths = [length(x)::Int for x in v.components]
cumlengths = [0; cumsum(lengths)]
j = searchsortedlast(cumlengths .+ 1, i)
if j > length(cumlengths)
error("indexing bounds error")
end
k = i - cumlengths[j]
if k < 1 || k > length(v.components[j])
error("indexing bounds error")
end
v.components[j][k]
end
function Base.getindex{I<:Real}(v::StackedVector,i::AbstractVector{I})
result = similar(v.components[1], length(i))
for idx in 1:length(i)
result[idx] = v[i[idx]]
end
result
end
Base.size(v::StackedVector) = (length(v),)
Base.length(v::StackedVector) = sum(map(length, v.components))
Base.ndims(v::StackedVector) = 1
Base.eltype(v::StackedVector) = promote_type(map(eltype, v.components)...)
Base.similar(v::StackedVector, T, dims::Dims) = similar(v.components[1], T, dims)
CategoricalArrays.CategoricalArray(v::StackedVector) = CategoricalArray(v[:]) # could be more efficient
"""
An AbstractVector that is a view into another AbstractVector with
repeated elements
NOTE: Not exported.
### Constructor
```julia
RepeatedVector(parent::AbstractVector, inner::Int, outer::Int)
```
### Arguments
* `parent` : the AbstractVector that's repeated
* `inner` : the numer of times each element is repeated
* `outer` : the numer of times the whole vector is repeated after
expanded by `inner`
`inner` and `outer` have the same meaning as similarly named arguments
to `repeat`.
### Examples
```julia
RepeatedVector([1,2], 3, 1) # [1,1,1,2,2,2]
RepeatedVector([1,2], 1, 3) # [1,2,1,2,1,2]
RepeatedVector([1,2], 2, 2) # [1,2,1,2,1,2,1,2]
```
"""
type RepeatedVector{T} <: AbstractVector{T}
parent::AbstractVector{T}
inner::Int
outer::Int
end
function Base.getindex{T,I<:Real}(v::RepeatedVector{T},i::AbstractVector{I})
N = length(v.parent)
idx = Int[Base.fld1(mod1(j,v.inner*N),v.inner) for j in i]
v.parent[idx]
end
function Base.getindex{T}(v::RepeatedVector{T},i::Real)
N = length(v.parent)
idx = Base.fld1(mod1(i,v.inner*N),v.inner)
v.parent[idx]
end
Base.getindex(v::RepeatedVector,i::Range) = getindex(v, [i;])
Base.size(v::RepeatedVector) = (length(v),)
Base.length(v::RepeatedVector) = v.inner * v.outer * length(v.parent)
Base.ndims(v::RepeatedVector) = 1
Base.eltype{T}(v::RepeatedVector{T}) = T
Base.reverse(v::RepeatedVector) = RepeatedVector(reverse(v.parent), v.inner, v.outer)
Base.similar(v::RepeatedVector, T, dims::Dims) = similar(v.parent, T, dims)
Base.unique(v::RepeatedVector) = unique(v.parent)
function CategoricalArrays.CategoricalArray(v::RepeatedVector)
res = CategoricalArrays.CategoricalArray(v.parent)
res.refs = repeat(res.refs, inner = [v.inner], outer = [v.outer])
res
end
##############################################################################
##
## stackdt()
## meltdt()
## Reshaping using referencing (issue #145), using the above vector types
##
##############################################################################
"""
A stacked view of a DataTable (long format)
Like `stack` and `melt`, but a view is returned rather than data
copies.
```julia
stackdt(dt::AbstractDataTable, [measure_vars], [id_vars];
variable_name::Symbol=:variable, value_name::Symbol=:value)
meltdt(dt::AbstractDataTable, [id_vars], [measure_vars];
variable_name::Symbol=:variable, value_name::Symbol=:value)
```
### Arguments
* `dt` : the wide AbstractDataTable
* `measure_vars` : the columns to be stacked (the measurement
variables), a normal column indexing type, like a Symbol,
Vector{Symbol}, Int, etc.; for `melt`, defaults to all
variables that are not `id_vars`
* `id_vars` : the identifier columns that are repeated during
stacking, a normal column indexing type; for `stack` defaults to all
variables that are not `measure_vars`
### Result
* `::DataTable` : the long-format datatable with column `:value`
holding the values of the stacked columns (`measure_vars`), with
column `:variable` a Vector of Symbols with the `measure_vars` name,
and with columns for each of the `id_vars`.
The result is a view because the columns are special AbstractVectors
that return indexed views into the original DataTable.
### Examples
```julia
d1 = DataTable(a = repeat([1:3;], inner = [4]),
b = repeat([1:4;], inner = [3]),
c = randn(12),
d = randn(12),
e = map(string, 'a':'l'))
d1s = stackdt(d1, [:c, :d])
d1s2 = stackdt(d1, [:c, :d], [:a])
d1m = meltdt(d1, [:a, :b, :e])
```
"""
function stackdt(dt::AbstractDataTable, measure_vars::Vector{Int},
id_vars::Vector{Int}; variable_name::Symbol=:variable,
value_name::Symbol=:value)
N = length(measure_vars)
cnames = names(dt)[id_vars]
insert!(cnames, 1, value_name)
insert!(cnames, 1, variable_name)
DataTable(Any[RepeatedVector(_names(dt)[measure_vars], nrow(dt), 1), # variable
StackedVector(Any[dt[:,c] for c in measure_vars]), # value
[RepeatedVector(dt[:,c], 1, N) for c in id_vars]...], # id_var columns
cnames)
end
function stackdt(dt::AbstractDataTable, measure_var::Int, id_var::Int;
variable_name::Symbol=:variable, value_name::Symbol=:value)
stackdt(dt, [measure_var], [id_var]; variable_name=variable_name,
value_name=value_name)
end
function stackdt(dt::AbstractDataTable, measure_vars, id_var::Int;
variable_name::Symbol=:variable, value_name::Symbol=:value)
stackdt(dt, measure_vars, [id_var]; variable_name=variable_name,
value_name=value_name)
end
function stackdt(dt::AbstractDataTable, measure_var::Int, id_vars;
variable_name::Symbol=:variable, value_name::Symbol=:value)
stackdt(dt, [measure_var], id_vars; variable_name=variable_name,
value_name=value_name)
end
function stackdt(dt::AbstractDataTable, measure_vars, id_vars;
variable_name::Symbol=:variable, value_name::Symbol=:value)
stackdt(dt, index(dt)[measure_vars], index(dt)[id_vars];
variable_name=variable_name, value_name=value_name)
end
function stackdt(dt::AbstractDataTable, measure_vars = numeric_vars(dt);
variable_name::Symbol=:variable, value_name::Symbol=:value)
m_inds = index(dt)[measure_vars]
stackdt(dt, m_inds, _setdiff(1:ncol(dt), m_inds);
variable_name=variable_name, value_name=value_name)
end
"""
A stacked view of a DataTable (long format); see `stackdt`
"""
function meltdt(dt::AbstractDataTable, id_vars; variable_name::Symbol=:variable,
value_name::Symbol=:value)
id_inds = index(dt)[id_vars]
stackdt(dt, _setdiff(1:ncol(dt), id_inds), id_inds;
variable_name=variable_name, value_name=value_name)
end
function meltdt(dt::AbstractDataTable, id_vars, measure_vars;
variable_name::Symbol=:variable, value_name::Symbol=:value)
stackdt(dt, measure_vars, id_vars; variable_name=variable_name,
value_name=value_name)
end
meltdt(dt::AbstractDataTable; variable_name::Symbol=:variable, value_name::Symbol=:value) =
stackdt(dt; variable_name=variable_name, value_name=value_name)