-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwinequality.py
162 lines (132 loc) · 5.31 KB
/
winequality.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import numpy as np
from sklearn.model_selection import cross_val_score
from sklearn import tree, svm, linear_model, neighbors
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import confusion_matrix
from sklearn.cluster import AgglomerativeClustering,KMeans
import warnings
warnings.filterwarnings('ignore')
number = 0
data = np.genfromtxt(
'./winequality-red.csv',
dtype=np.float32,
delimiter=';',
skip_header=1
)
X = data[:, 0:11]
Y = data[:, 11]
classifier1 = tree.DecisionTreeClassifier(random_state=0)
classifier2 = svm.SVC(gamma='auto', random_state=0)
classifier3 = linear_model.LogisticRegression(multi_class='auto', solver='liblinear', random_state=0)
classifier4 = neighbors.KNeighborsClassifier(n_neighbors=5)
def Accuracy(classifier):
accuracy = cross_val_score(classifier,X,Y,cv=5).mean()
accuracy_score = round(accuracy*100,1)
return accuracy_score
def precision(classifier):
y_true = data[:, 11]
y_pred = []
classifier = classifier.fit(X, Y)
y_pred = classifier.predict(X)
precision = precision_score(y_true, y_pred, average=None)
return precision
def recall(classifier):
y_true = data[:, 11]
y_pred = []
classifier = classifier.fit(X, Y)
y_pred = classifier.predict(X)
recall = recall_score(y_true, y_pred, average=None)
return recall
def confusion(classifier):
y_true = data[:, 11]
y_pred = []
classifier = classifier.fit(X, Y)
y_pred=classifier.predict(X)
confusion = confusion_matrix(y_true, y_pred)
return confusion
def predict(input_, classifier):
classifier = classifier.fit(X, Y)
predicted_class = classifier.predict([input_])
return predicted_class[0]
def hierarchical(cluster_amount,wine_num):
wine_arr = np.array(X)
model = AgglomerativeClustering(n_clusters = cluster_amount)
model.fit(wine_arr)
result=model.labels_[wine_num]
return result
def K_means(cluster_amount,wine_num):
wine_arr = np.array(X)
model = KMeans(n_clusters = cluster_amount, random_state=0)
model.fit(wine_arr)
result=model.labels_[wine_num]
return result
while number != 5:
print(
'''[Wine Quality]
[name: Guinness]
1. Evaluate classifiers
2. Input the information about a wine
3. Predict wine quality
4. Cluster wines
5. Quit '''
)
number = int(input())
if number == 1:
print('[Accuracy estimation]')
print("Decision tree:", Accuracy(classifier1), "%")
print("Support vector machine:", Accuracy(classifier2), "%")
print("linear:", Accuracy(classifier3), "%")
print("Knn:", Accuracy(classifier4), "%")
print('\n ')
print('[Confusion Matrix]')
print("1. Decision tree:", '\n ',confusion(classifier1))
print("2. Support vector machine:",'\n ', confusion(classifier2))
print("3. Logistic:",'\n ', confusion(classifier3))
print("4. Knn:",'\n ', confusion(classifier4))
print('\n ')
print('[Precision]')
print("1. Decision tree:", precision(classifier1))
print("2. Support vector machine:", precision(classifier2))
print("3.Logistic:", precision(classifier3))
print("4. Knn:", precision(classifier4))
print('\n ')
print('[Recall]')
print("1. Decision tree:", recall(classifier1))
print("2. Support vector machine:", recall(classifier2))
print("3. Logistic:", recall(classifier3))
print("4. Knn:", recall(classifier4))
temp = input()
elif number == 2:
print('[Wine information]')
input_data = []
header = ["fixed acidity", "volatile acidity", "citric acid", "residual sugar", "chlorides",
"free sulfur dioxide", "total sulfur dioxide", "density", "pH",
"sulphates", "alcohol"]
length = len(header)
for i in range(length):
input_data.append(float(input("{}.{}: ".format(i + 1, header[i]))))
temp = input()
elif number == 3:
print("[Predicted wine quality]")
print("Decision tree:", predict(input_data, classifier1))
print("Support vector machine:", predict(input_data, classifier2))
print("Logistic regression:", predict(input_data, classifier3))
print("K-NN classifier: ", predict(input_data, classifier4))
temp = input()
elif number == 4:
cluster_input=input("Select the algorithm ((h)ierarchical or (k)-means):")
cluster_amount=int(input("Input the number of cluseters:"))
cluster_firstwine = int(input("Input the number of first wine:"))
cluster_secondwine = int(input("Input the number of second wine:"))
if cluster_input == 'h':
first_result=hierarchical(cluster_amount,cluster_firstwine)
second_result = hierarchical(cluster_amount,cluster_secondwine)
elif cluster_input == 'k':
first_result = K_means(cluster_amount, cluster_firstwine)
second_result = K_means(cluster_amount, cluster_secondwine)
if first_result == second_result:
print("Result : ",cluster_firstwine,"and",cluster_secondwine," are in the same cluster")
else:
print("Result : ", cluster_firstwine, "and", cluster_secondwine, " are in the different cluster")
temp=input()