-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFFT.cs
218 lines (196 loc) · 6.14 KB
/
FFT.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
/// <summary>
/// DEPRECATED
/// </summary>
using System;
/*using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Ink;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;*/
using UnityEngine;
/**
* Performs an in-place complex FFT.
*
* Released under the MIT License
*
* Copyright (c) 2010 Gerald T. Beauregard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
public class FFT
{
// Element for linked list in which we store the
// input/output data. We use a linked list because
// for sequential access it's faster than array index.
class FFTElement
{
public double re = 0.0; // Real component
public double im = 0.0; // Imaginary component
public FFTElement next; // Next element in linked list
public uint revTgt; // Target position post bit-reversal
}
private uint m_logN = 0; // log2 of FFT size
private uint m_N = 0; // FFT size
private FFTElement[] m_X; // Vector of linked list elements
/**
*
*/
public FFT()
{
}
/**
* Initialize class to perform FFT of specified size.
*
* @param logN Log2 of FFT length. e.g. for 512 pt FFT, logN = 9.
*/
public void init(
uint logN )
{
m_logN = logN;
m_N = (uint)(1 << (int)m_logN);
// Allocate elements for linked list of complex numbers.
m_X = new FFTElement[m_N];
for (uint k = 0; k < m_N; k++)
m_X[k] = new FFTElement();
// Set up "next" pointers.
for (uint k = 0; k < m_N-1; k++)
m_X[k].next = m_X[k+1];
// Specify target for bit reversal re-ordering.
for (uint k = 0; k < m_N; k++ )
m_X[k].revTgt = BitReverse(k,logN);
}
/**
* Performs in-place complex FFT.
*
* @param xRe Real part of input/output
* @param xIm Imaginary part of input/output
* @param inverse If true, do an inverse FFT
*/
public void run(
double[] xRe,
double[] xIm,
bool inverse = false )
{
uint numFlies = m_N >> 1; // Number of butterflies per sub-FFT
uint span = m_N >> 1; // Width of the butterfly
uint spacing = m_N; // Distance between start of sub-FFTs
uint wIndexStep = 1; // Increment for twiddle table index
// Copy data into linked complex number objects
// If it's an IFFT, we divide by N while we're at it
FFTElement x = m_X[0];
uint k = 0;
double scale = inverse ? 1.0/m_N : 1.0;
while (x != null)
{
x.re = scale*xRe[k];
x.im = scale*xIm[k];
x = x.next;
k++;
}
// For each stage of the FFT
for (uint stage = 0; stage < m_logN; stage++)
{
// Compute a multiplier factor for the "twiddle factors".
// The twiddle factors are complex unit vectors spaced at
// regular angular intervals. The angle by which the twiddle
// factor advances depends on the FFT stage. In many FFT
// implementations the twiddle factors are cached, but because
// array lookup is relatively slow in C#, it's just
// as fast to compute them on the fly.
double wAngleInc = wIndexStep * 2.0*Math.PI/m_N;
if (inverse == false)
wAngleInc *= -1;
double wMulRe = Math.Cos(wAngleInc);
double wMulIm = Math.Sin(wAngleInc);
for (uint start = 0; start < m_N; start += spacing)
{
FFTElement xTop = m_X[start];
FFTElement xBot = m_X[start+span];
double wRe = 1.0;
double wIm = 0.0;
// For each butterfly in this stage
for (uint flyCount = 0; flyCount < numFlies; ++flyCount)
{
// Get the top & bottom values
double xTopRe = xTop.re;
double xTopIm = xTop.im;
double xBotRe = xBot.re;
double xBotIm = xBot.im;
// Top branch of butterfly has addition
xTop.re = xTopRe + xBotRe;
xTop.im = xTopIm + xBotIm;
// Bottom branch of butterly has subtraction,
// followed by multiplication by twiddle factor
xBotRe = xTopRe - xBotRe;
xBotIm = xTopIm - xBotIm;
xBot.re = xBotRe*wRe - xBotIm*wIm;
xBot.im = xBotRe*wIm + xBotIm*wRe;
// Advance butterfly to next top & bottom positions
xTop = xTop.next;
xBot = xBot.next;
// Update the twiddle factor, via complex multiply
// by unit vector with the appropriate angle
// (wRe + j wIm) = (wRe + j wIm) x (wMulRe + j wMulIm)
double tRe = wRe;
wRe = wRe*wMulRe - wIm*wMulIm;
wIm = tRe*wMulIm + wIm*wMulRe;
}
}
numFlies >>= 1; // Divide by 2 by right shift
span >>= 1;
spacing >>= 1;
wIndexStep <<= 1; // Multiply by 2 by left shift
}
// The algorithm leaves the result in a scrambled order.
// Unscramble while copying values from the complex
// linked list elements back to the input/output vectors.
x = m_X[0];
while (x != null)
{
uint target = x.revTgt;
xRe[target] = x.re;
xIm[target] = x.im;
x = x.next;
}
}
/**
* Do bit reversal of specified number of places of an int
* For example, 1101 bit-reversed is 1011
*
* @param x Number to be bit-reverse.
* @param numBits Number of bits in the number.
*/
private uint BitReverse(
uint x,
uint numBits)
{
uint y = 0;
for (uint i = 0; i < numBits; i++)
{
y <<= 1;
y |= x & 0x0001;
x >>= 1;
}
return y;
}
}