-
Notifications
You must be signed in to change notification settings - Fork 138
/
inference.py
65 lines (52 loc) · 2.18 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import tensorflow as tf
import numpy as np
import os
from scipy import misc
import argparse
import sys
g_mean = np.array(([126.88,120.24,112.19])).reshape([1,1,3])
output_folder = "./test_output"
def rgba2rgb(img):
return img[:,:,:3]*np.expand_dims(img[:,:,3],2)
def main(args):
if not os.path.exists(output_folder):
os.mkdir(output_folder)
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction = args.gpu_fraction)
with tf.Session(config=tf.ConfigProto(gpu_options = gpu_options)) as sess:
saver = tf.train.import_meta_graph('./meta_graph/my-model.meta')
saver.restore(sess,tf.train.latest_checkpoint('./salience_model'))
image_batch = tf.get_collection('image_batch')[0]
pred_mattes = tf.get_collection('mask')[0]
if args.rgb_folder:
rgb_pths = os.listdir(args.rgb_folder)
for rgb_pth in rgb_pths:
rgb = misc.imread(os.path.join(args.rgb_folder,rgb_pth))
if rgb.shape[2]==4:
rgb = rgba2rgb(rgb)
origin_shape = rgb.shape
rgb = np.expand_dims(misc.imresize(rgb.astype(np.uint8),[320,320,3],interp="nearest").astype(np.float32)-g_mean,0)
feed_dict = {image_batch:rgb}
pred_alpha = sess.run(pred_mattes,feed_dict = feed_dict)
final_alpha = misc.imresize(np.squeeze(pred_alpha),origin_shape)
misc.imsave(os.path.join(output_folder,rgb_pth),final_alpha)
else:
rgb = misc.imread(args.rgb)
if rgb.shape[2]==4:
rgb = rgba2rgb(rgb)
origin_shape = rgb.shape[:2]
rgb = np.expand_dims(misc.imresize(rgb.astype(np.uint8),[320,320,3],interp="nearest").astype(np.float32)-g_mean,0)
feed_dict = {image_batch:rgb}
pred_alpha = sess.run(pred_mattes,feed_dict = feed_dict)
final_alpha = misc.imresize(np.squeeze(pred_alpha),origin_shape)
misc.imsave(os.path.join(output_folder,'alpha.png'),final_alpha)
def parse_arguments(argv):
parser = argparse.ArgumentParser()
parser.add_argument('--rgb', type=str,
help='input rgb',default = None)
parser.add_argument('--rgb_folder', type=str,
help='input rgb',default = None)
parser.add_argument('--gpu_fraction', type=float,
help='how much gpu is needed, usually 4G is enough',default = 1.0)
return parser.parse_args(argv)
if __name__ == '__main__':
main(parse_arguments(sys.argv[1:]))