forked from y-ncao/Python-Study
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch_n_sort.py
executable file
·224 lines (190 loc) · 6.02 KB
/
search_n_sort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#!/usr/bin/env python
def swap(data_list, i1, i2):
temp = data_list[i1]
data_list[i1] = data_list[i2]
data_list[i2] = temp
def bubble_sort(data_list):
flag = True
for i in range( 1, len(data_list)):
flag = True
for j in range( 1, len(data_list)):
if data_list[j-1] > data_list[j]:
flag = False
swap(data_list, j, j-1)
print data_list
if flag:
break
def selection_sort(data_list):
for i in range( len(data_list)-1):
for j in range( i+1, len(data_list)):
if data_list[j] < data_list[i]:
swap(data_list, i, j)
print data_list
def insertion_sort(data_list):
for i in range( len(data_list) ):
temp = data_list[i]
k = i
while data_list[k-1] > temp and k > 0:
data_list[k] = data_list[k-1]
k -= 1
data_list[k] = temp
print data_list
def merge_sort(data_list, low, high):
if low < high:
middle = (low + high) / 2
merge_sort(data_list, low, middle)
merge_sort(data_list, middle+1, high)
merge(data_list, low, middle, high)
def merge(data_list, low, middle, high):
helper = [None] * len(data_list)
for i in range(low, high+1):
helper[i] = data_list[i]
helper_left = low
helper_right = middle + 1
current = low
while helper_left <= middle and helper_right <= high:
if helper[helper_left] <= helper[helper_right]:
data_list[current] = helper[helper_left]
helper_left += 1
else:
data_list[current] = helper[helper_right]
helper_right += 1
current += 1
remaining = middle - helper_left
for i in range(remaining+1):
data_list[current+i] = helper[helper_left+i]
# These are all for quick sort
def quick_sort(data_list, left, right):
index = partition(data_list, left, right)
if left < index - 1:
quick_sort(data_list, left, index - 1)
if index < right:
quick_sort(data_list, index, right)
def partition(data_list, left, right):
pivot = data_list[ (left + right ) / 2]
while left < right:
while data_list[left] < pivot:
left += 1
while data_list[right] > pivot:
right -= 1
if left <= right:
swap(data_list, left, right)
left += 1
right -= 1
return left
# Maybe heapsort
# Binary Search
def binary_search_recur(data_list, i, low, high):
mid = (low + high) / 2
if i == data_list[mid]:
return True
elif i < data_list[mid]:
return binary_search_recur(data_list, i, low, mid-1)
else:
return binary_search_recur(data_list, i, mid+1, high)
return False
def binary_search_iter(data_list, i):
low = 0
high = len(data_list) - 1
while low <= high:
mid = (low + high) / 2
if i == data_list[mid]:
return True
elif i < data_list[mid]:
high = mid - 1
else:
low = mid + 1
print low, mid, high
return False
# Q1 len(list_a) is much larger than len(list_b)
def merge_lists(list_a, list_b):
index_a = len(list_a) - 1
index_b = len(list_b) - 1
current = index_a + index_b + 1
while index_a > 0 and index_b > 0:
if list_a[index_a] <= list_b[index_b]:
index_a[current] = list_b[index_b]
index_b -= 1
current -=1
else:
index_a[current] = list_a[index_a]
index_a -= 1
current -= 1
if index_b > 0:
for i in range(current+1):
list_a[current] = list_b[current]
# Q2
def sort_anagrams(ana_list):
pass
# Q3
def find_rotate(data_list, i, left, right):
mid = (left + right) / 2
if data_list[mid] == i:
return True
if left > right:
return False
# left clean
if data_list[mid] > data_list[left]):
if i < data_list[mid]:
find_rotate(data_list, i, left, mid)
# Need to find both direction
else:
find_rotate(data_list, i, left, mid)
find_rotate(data_list, i, mid, right)
# right clean
else:
if i > data_list[mid]:
find_rotate(data_list, i, mid, right)
else:
find_rotate(data_list, i, left, mid)
find_rotate(data_list, i, mid, right)
return False
# Need to complete with the index
# Q5 Almost the same, but need to check if actually the same
# Need to notice the sequence of check
# 1. Check if empty
# 2. Check if correct
def search_empty_string(data_list, string, left, right):
mid = (left + right) / 2
if data_list[mid] is None:
current_left = mid - 1
current_right = mid + 1
while True:
if current_left < left and current_right > right:
return False
elif current_right <= right and data_list[current_right] is not None:
mid = current_right
break
elif current_left >= left and data_list[current_left] is not None:
mid = current_left
break
current_right += 1
current_left -= 1
if data_list[mid] == string:
return True
elif data_list[mid] < string:
search_empty_string(data_list, string, mid+1, right)
else:
search_empty_string(data_list, string, left, mid-1)x
# read Q6
# Q7 is recurrsion, will do it later
# Q8
def get_rank(node, number):
if node.data == number:
if __name__ == '__main__':
import random
data_list = []
while True:
rand = random.randint(0,20)
if rand not in data_list:
data_list.append(rand)
if len(data_list) == 21:
break
print data_list
#selection_sort(data_list)
#bubble_sort(data_list)
#insertion_sort(data_list)
#merge_sort(data_list, 0, len(data_list)-1)
#quick_sort(data_list, 0, len(data_list)-1)
#print binary_search_recur(data_list, 10, 0, len(data_list)-1)
print binary_search_iter(data_list, 10)